

ConML Technical Specification

version 1.5.2 · 1 June 2020

ConML by Institute of Heritage Sciences (Incipit), Spanish National Research Council (CSIC)

is licensed under a Creative Commons Attribution 4.0 International License.

This document and its contents were created by Cesar Gonzalez-Perez.

Partial funding was provided by Incipit · CSIC and projects MIRFOL (grant number 09SEC002606PR, INCITE
Programme, Xunta de Galicia, Spain), ARIADNE (grant number 313193, FP7-INFRASTRUCTURES-2012-1) and
MARIOL (grant number HAR2013-41653-R, Retos de la Sociedad, Plan Estatal 2013-2016, Spain).

1 June 2020 19:17 revision 1168

ConML Technical Specification · version 1.5.1

2

Table of Contents

1 Introduction ... 3

2 Motivation and Requirements ... 3

3 Architecture ... 4

4 Metamodel ... 4
4.1 General Classes... 5
4.2 Types Package .. 7
4.3 Instances Package .. 22
4.4 Namespaces ... 30
4.5 Further Semantics .. 32
4.6 Soft Issues ... 37
4.7 Type Model Extension .. 40
4.8 Metainformation .. 43
4.9 References between Models .. 43

5 Notation ... 44
5.1 General Notation .. 45
5.2 Class Diagrams .. 47
5.3 Object Diagrams ... 51
5.4 Specification Tables .. 56
5.5 Informal Variations ... 56

Acknowledgments ... 58

References ... 58

ConML Technical Specification · version 1.5.1

3

1 Introduction

This document contains the technical specification of ConML version 1.5.1. The abstract syntax
of ConML is specified as a UML [2, 3] class metamodel, and the ConML graphical notation is
described through natural language and diagrams.

For additional information on ConML, please visit www.conml.org. Thank you.

2 Motivation and Requirements
Conceptual modelling is often described as a complex discipline that only engineers with
proper training can understand and practice. Whereas this is true to some extent, it is also true
that people in a wide range of disciplines often construct models that represent their domain
of discourse, be it molecular biology, computer programming or cultural heritage. Over the
years, we have observed that people with very little exposure to information technologies are
perfectly capable of constructing valid and useful conceptual models if they are given a simple
and affordable language in which they can express their ideas. This allows them not only to
understand and study relatively complex models, but also to create and maintain them from
the very beginning, perhaps assisted by information modelling experts, thus becoming owners
of their conceptualizations. Therefore, it is crucial that the modelling language that they use be
easily usable by non-experts in information technologies. This, in turn, imposes certain
implications regarding simplicity and independence of implementation details. Existing
modelling languages, such as UML [2], are too complex, computer-oriented, and reliant on
specific implementations as to be useful in this scenario.

Especially for the disciplines in the humanities and social sciences, aspects such as vagueness,
subjectivity and temporality, which are rarely considered by conventional modelling languages,
must be incorporated in an integrated fashion in the models that are developed. This means
that the modelling language being used must be capable of expressing information related to
these aspects without putting a big burden on the users.

Finally, the modelling language must be as understandable and familiar to external parties as
possible, aiding to the transfer of knowledge and expertise between domains. This makes the
object-oriented paradigm a very good choice.

In summary, the requirements of such a modelling language are as follows:

• It must be capable of representing structural models, using the object-oriented
paradigm.

• It must be oriented towards conceptual modelling rather than software
implementations.

• It must extend the conventional object-oriented paradigm to accommodate often-
neglected “soft” issues such as vagueness, temporality and subjectivity.

• It must be easily affordable to non-experts in information technologies. This means
that it must exhibit high syntactic, semantic and notational simplicity.

• It must be incrementally understandable and applicable, so that a basic subset of it can
be comprehended and used before more advanced areas are tackled.

• It must be precise and complete enough so that it can work as a formal basis for
information systems development.

http://www.conml.org/

ConML Technical Specification · version 1.5.1

4

• The associated notation must be easily used by hand (on paper or whiteboard, for
instance), as well as on a computer (on screen or hard copy).

• As long as it is viable, and without jeopardising the above mentioned requirements, it
must keep syntactic, semantic and notational compatibility with UML [2].

A comprehensive description of the ConML design goals can be found in [1].

These requirements have become the characteristics of the ConML conceptual modelling
language, which is described in depth in the remaining sections of this document.

3 Architecture

ConML is composed of the following packages:

• Types. This package contains classes such as TypeModel, Class, Attribute and
Association, which allow for the creation of type models, which represent the world in
terms of categories of things.

• Instances. This package contains classes such as InstanceModel, Object and Link,
which allow for the creation of instance models, which represent the world in terms of
actual entities.

Figure 1 shows a graphical overview of the different model element types in ConML.

Figure 1. Overview of the major model element types in ConML.

4 Metamodel
This section contains a detailed specification of each class, attribute and association in the
ConML metamodel.

ModelElement

TypeModelElement InstanceModelElement

Type

Name: string

Definition: string

Class

IsAbstract: bool

IsTempora lAspect: bool

IsSubjectiveAspect: boo l

Feature

MinimumCardina lity: int

MaximumCardinality: int

IsSorted: boo l

IsConstant: bool

IsTempora l: bool

IsSubjective: bool

AssociationDataType

Instance

Object

Identifier: string

Link

FacetSet

ConML Technical Specification · version 1.5.1

5

4.1 General Classes

4.1.1 Model

A model is a collection of elements that represents a portion of the world.

This is an abstract class, which is specialized into TypeModel and InstanceModel.

Figure 2 shows the Model class and its subclasses.

4.1.1.1 Attributes

Name Type Description

Name multilingual string The name of the model. For example, “CHARM09”.

Version object The version of the model. This can be displayed as a
string (e.g. “1.0.15.206”) and has comparable
semantics that take into account each numeric
element in the version string.

Description multilingual string The description of the model, in natural language.

4.1.1.2 Associations

Name/Role Opposite class Description

HasTags Tag A model may have a number of tags.

HasLanguages Language A model has a number of languages.

DefaultLanguage Language A model has a default language.

OwnsElements ModelElement A model may own a number of model elements.

Figure 2. Model-related classes in the ConML metamodel.

4.1.2 ModelPart

A model part is an entity that belongs to a model.

This is an abstract class, which is specialized into Language, Tag and ModelElement.

Figure 3 shows the ModelPart class in context.

4.1.2.1 Attributes

Name Type Description

(this class has no attributes)

4.1.2.2 Associations

Name/Role Opposite class Description

(this class has no associations)

4.1.3 Language

A language is a model part corresponding to the specification of a human language that may
be employed by model elements.

This class specializes from ModelPart.

Model

Name: string

Version: object

Description: string

TypeModel InstanceModelConformsTo 0..*1

Extends

Base0..1

Particular

0..*

ConML Technical Specification · version 1.5.1

6

Languages can be useful to describe model elements, both at the type and instance levels, in
multiple languages. See Multilingualism, p. 40, for more information.

Figure 3 shows the Language class in context.

4.1.3.1 Attributes

Name Type Description

Name string The unique name of the language, following the IETF
language tag recommendation
(https://en.wikipedia.org/wiki/IETF_language_tag), but
using underscores instead of hyphens, such as
“en_GB”.

Description multilingual string The description, or display name, of the language, such
as “English”.

IsDefault bool Indicates whether the language is the default one in
the model.

4.1.3.2 Associations

Name/Role Opposite class Description

BelongsTo Model A language always belongs to a given model.

IsTranslation-
QualifierOf

FacetSet A language may be the translation qualifier of a
number of facet sets (see Multilingualism, p. 40).

4.1.4 Tag

A tag is a model part corresponding to a label that may be applied to model elements.

This class specializes from ModelPart.

Tags can be useful to assign custom text strings to model elements.

Figure 3 shows the Tag class in context.

4.1.4.1 Attributes

Name Type Description

Name multilingual string The name of the tag.

4.1.4.2 Associations

Name/Role Opposite class Description

BelongsTo Model A tag always belongs to a given model.

AppliesTo ModelElement A tag may apply to a number of model elements.

Figure 3. Tags and languages in the ConML metamodel.

4.1.5 ModelElement

A model element is a model part that represents an entity in the world that is relevant to the
model.

Model

Tag

Name: string

Language

Name: string

Description: string

IsDefault: bool

0..*

1..*1

1

ModelPart

https://en.wikipedia.org/wiki/IETF_language_tag

ConML Technical Specification · version 1.5.1

7

This is an abstract class, which specializes from ModelPart and is further specialized into Type-
ModelElement and InstanceModelElement.

Figure 1 shows an overview of the main model element types in ConML.

4.1.5.1 Attributes

Name Type Description

(this class has no attributes)

4.1.5.2 Associations

Name/Role Opposite class Description

BelongsTo/
OwnerModel

Model A model element always belongs to a given owner
model.

IsTaggedWith Tag A model element may be tagged with a number of
tags.

IsDocumentedBy/
Metainformation

Object A model element may be documented by a number of
metainformation objects (see Metainformation, p. 43).

4.2 Types Package

The following sections describe the classes and associated elements in this package.

4.2.1 TypeModel

A type model is a model that contains types.

For example, a type model could contain types that describe the realm of interest for
architects as composed of cities, buildings, streets and people, plus the relationships between
these.

This class specializes from Model.

Figure 2 shows the TypeModel class in context.

4.2.1.1 Attributes

Name Type Description

Name multilingual string [Inherited from Model] The name of the type model.

Version object [Inherited from Model] The version of the type model.
This can be displayed as a string (e.g. “1.0.15.206”) and
has comparable semantics that take into account each
numeric element in the version string.

Description multilingual string [Inherited from Model] The description of the type
model, in natural language.

4.2.1.2 Associations

Name/Role Opposite class Description

HasTags Tag [Inherited from Model] A type model may have a
number of tags.

HasLanguages Language [Inherited from Model] A type model has a number of
languages.

HasDefaultLanguage Language [Inherited from Model] A type model has a default
language.

OwnsElements TypeModelElement [Redefined from Model] A type model may own a
number of type model elements.

HasElements TypeModelElement A type model may have a number of type model
elements.

ConML Technical Specification · version 1.5.1

8

Name/Role Opposite class Description

n/a InstanceModel There may be a number of instance models that
conform to a type model.

/TemporalAspect Class A type model may have a temporal aspect class (see
Temporality, p. 37).

/SubjectiveAspect Class A type model may have a subjective aspect class (see
Subjectivity, p. 38).

Extends/Base TypeModel A type model may extend a base type model.

/Particular TypeModel A type model may have a number of particular type
models.

4.2.2 TypeModelElement

A type model element is an element in a type model.

This is an abstract class, which specializes from ModelElement and is further specialized into
Type, Generalization, EnumeratedItem and Package.

Figure 1 shows an overview of the main model element types in ConML.

4.2.2.1 Attributes

Name Type Description

(this class has no attributes)

4.2.2.2 Associations

Name/Role Opposite class Description

BelongsTo/
OwnerModel

TypeModel [Redefined from ModelElement] A type model element
always belongs to an owner type model.

IsTaggedWith Tag [Inherited from ModelElement] A type model element
may be tagged with a number of tags.

IsDocumentedBy/
Metainformation

Object [Inherited from ModelElement] A type model element
may be documented by a number of metainformation
objects (see Metainformation, p. 43).

IsAssignedTo TypeModel A type model element is assigned to a number of type
models.

4.2.3 Type

A type is an element in a type model that can be instantiated.

For example, a type can describe a category of things such as Person or House (i.e. classes), a
characteristic of a category of things such as Age (i.e. a feature), a relationship between
categories of things such as Owns (i.e. an association), or a data type for which values may
occur such as Number (i.e. a data type).

This is an abstract class, which specializes from TypeModelElement and is further specialized
into Class, Feature, DataType and Association.

Figure 1 shows an overview of ConML including the Type class in context.

4.2.3.1 Attributes

Name Type Description

Name multilingual string The name of the type. For example, “Person”.

Definition multilingual string The definition of the type, in natural language.

ConML Technical Specification · version 1.5.1

9

4.2.3.2 Associations

Name/Role Opposite class Description

IsTaggedWith Tag [Inherited from ModelElement] A type may be tagged
with a number of tags.

IsDocumentedBy/
Metainformation

Object [Inherited from ModelElement] A type may be
documented by a number of metainformation objects
(see Metainformation, p. 43).

BelongsTo/
OwnerModel

TypeModel [Inherited from TypeModelElement] A type always
belongs to an owner type model.

Figure 4. Overview of the Types package. Please see further figures for additional information.

4.2.4 Class

A class is the formalization of a category that is relevant to the model.

For example, a model about archaeology might include classes such as Site, Structure or
Excavation.

This class specializes from Type.

Figure 4 and Figure 5 show portions of the ConML metamodel including the Class class.

4.2.4.1 Attributes

Name Type Description

Name multilingual string [Inherited from Type] The name of the class. For
example, “Site”.

Definition multilingual string [Inherited from Type] The definition of the class, in
natural language.

IsAbstract bool Indicates whether the class is abstract, i.e. whether it
cannot possess direct instances.

Feature

/Name: string

/Definition: string

MinimumCardinality: int

MaximumCardinality: int

IsSorted: bool

IsConstant: bool

IsTemporal: bool

IsSubjective: bool

Property Attribute

IsMultilingual: bool

SemiAssociation

Role: string

IsWhole: bool

IsStrong: bool

DataType

/Name: string

/Definition: string

IsOfType0..*

1Type

Association

/Name: string

/Definition: string

Primary

Secondary

1

1

0..1

0..1

Class

/Name: string

/Definition: string

IsAbstract: bool

IsTempora lAspect: bool

IsSubjectiveAspect: boo l

0..*
0..*

0..*

1

1

1

Owner

Owner

Owner

0..*
0..* 0..*

1..*

1..*

1..*

IsInverseOf

1

Inverse

Generalization

Discriminant: string

0..1

Special ization

1 GeneralizedClass

0..* Generalization

1..*Special izedClass

OwnsAttributes

HasAttributes

OwnsSemiAssociations

HasSemiAssociations

ConML Technical Specification · version 1.5.1

10

Name Type Description

IsTemporalAspect bool Indicates whether the class constitutes the temporal
aspect in the model (see Temporality, p. 37).

IsSubjectiveAspect bool Indicates whether the class constitutes the subjective
aspect in the model (see Subjectivity, p. 38).

4.2.4.2 Associations

Name/Role Opposite class Description

IsTaggedWith Tag [Inherited from ModelElement] A class may be tagged
with a number of tags.

IsDocumentedBy/
Metainformation

Object [Inherited from ModelElement] A class may be
documented by a number of metainformation objects
(see Metainformation, p. 43).

BelongsTo/
OwnerModel

TypeModel [Inherited from TypeModelElement] A class always
belongs to an owner type model.

/Specialization Generalization A class may be specialized; i.e. it may participate in a
generalization that works as its specialization (see
Multiple Generalization of Classes, p. 34).

/Generalization Generalization A class may be generalized; i.e. it may participate in a
number of generalizations in which it is the specialized
class (see Multiple Generalization of Classes, p. 34).

/Dominant-
Generalization

Generalization If a class is generalized, then one of the generalizations
that it has is the dominant generalization (see Multiple
Generalization of Classes, p. 34).

OwnsProperties Property A class may own multiple properties.

HasProperties Property A class may have multiple properties. These include
the owned plus the inherited properties (see Feature
Inheritance, p. 34).

OwnsAttributes Attribute A class may own multiple attributes.

HasAttributes Attribute A class may have multiple attributes. These include the
owned plus the inherited attributes (see Feature
Inheritance, p. 34).

OwnsSemi-
Associations

SemiAssociation A class may own multiple semi-associations.

HasSemiAssociations SemiAssociation A class may have multiple semi-associations. These
include the owned plus the inherited semi-associations
(see Feature Inheritance, p. 34).

n/a SemiAssociation A class may be the opposite class of a number of semi-
associations.

IsTemporalAspectOf TypeModel A class may be the temporal aspect of a number of
type models (see Temporality, p. 37).

IsSubjectiveAspectOf TypeModel A class may be the subjective aspect of a number of
type models (see Subjectivity, p. 38).

/Instance Object A class may have a number of instance objects.

n/a Package A class may belong to a package.

ConML Technical Specification · version 1.5.1

11

Figure 5. Fragment of the ConML metamodel showing the Class and Generalization classes.

4.2.5 Generalization

A generalization is the formalization of a subsumption relationship between two categories
that is relevant to the model. The “generalization” notion corresponds to the viewpoint of the
subsumed category; the opposite concept is that of “specialization”, which corresponds to the
viewpoint of the subsuming category.

ConML implements multiple generalization, but not multiple specialization. This means that a
class may be generalized through zero, one or multiple generalizations; but a class may be only
specialized through zero or one (never multiple) generalizations. See Multiple Generalization of
Classes, p. 34 for details. Generalization relationships determine what features are inherited by
each class; see Feature Inheritance, p. 34.

For example, the Structure and Artefact classes in a model about archaeology could be related
to the MaterialElement class via a generalization in which MaterialElement is the generalized
class and both Structure and Artefact are specialized classes.

This class specializes from TypeModelElement.

Figure 5 shows a portion of the ConML metamodel including the Generalization class.

4.2.5.1 Attributes

Name Type Description

Discriminant multilingual string The characteristic of the generalized class that acts as
differentiating factor among the specialized classes.

4.2.5.2 Associations

Name/Role Opposite class Description

IsTaggedWith Tag [Inherited from ModelElement] A generalization may
be tagged with a number of tags.

IsDocumentedBy/
Metainformation

Object [Inherited from ModelElement] A generalization may
be documented by a number of metainformation
objects (see Metainformation, p. 43).

BelongsTo/
OwnerModel

TypeModel [Inherited from TypeModelElement] A generalization
always belongs to an owner type model.

/GeneralizedClass Class A generalization is always rooted on a given
generalized class, of which it is the specialization.

/SpecializedClass Class A generalization always involves one or more
specialized classes, of which it is a generalization.

Dominates-
InheritanceOn

Class A generalization always dominates the inheritance on
one or more classes (see Multiple Generalization of
Classes, p. 34).

4.2.6 Feature

A feature is the formalization of a characteristic of a category that is relevant to the model.

This is an abstract class, which specializes from Type and is further specialized into Property,
Attribute and SemiAssociation.

Class

/Name: string

/Definition: string

IsAbstract: bool

IsTemporalAspect: bool

IsSubjectiveAspect: bool

Generalization

Discriminant: string

GeneralizedClass 1

0..1 Specialization

0..* Generalization

SpecializedClass 1..*

DominatesInheritanceOn1..* 0..1

DominantGeneralization

ConML Technical Specification · version 1.5.1

12

Figure 4 shows a portion of the ConML metamodel including the Feature class.

4.2.6.1 Attributes

Name Type Description

Name multilingual string [Inherited from Type] The name of the feature. For
example, “Age”.

Definition multilingual string [Inherited from Type] The definition of the feature, in
natural language.

MinimumCardinality int The minimum number of discrete entities that may be
related to the associated characteristic.

MaximumCardinality int The maximum number of discrete entities that may be
related to the associated characteristic.

IsSorted bool Whether multiple instances of the feature are sorted
in a specific order.

IsConstant bool Whether the feature has constant semantics, i.e. no
changes may be made to instances of the feature. See
Temporality, p. 37.

IsTemporal bool Whether the feature has temporal semantics, i.e.
changes to the instances of the feature may entail
different phase parts of the associated object. See
Temporality, p. 37.

IsSubjective bool Whether the feature has subjective semantics, i.e.
changes to the instances of the feature may entail
different perspective parts of the associated object.
See Subjectivity, p. 38.

4.2.6.2 Associations

Name/Role Opposite class Description

IsTaggedWith Tag [Inherited from ModelElement] A feature may be
tagged with a number of tags.

IsDocumentedBy/
Metainformation

Object [Inherited from ModelElement] A feature may be
documented by a number of metainformation objects
(see Metainformation, p. 43).

BelongsTo/
OwnerModel

TypeModel [Inherited from TypeModelElement] A feature always
belongs to an owner type model.

Redefines/
RedefinedOriginal

Feature A feature may redefine a given original feature.

IsRedefinedBy/
Redefinition

Feature A feature may be redefined by a number of
redefinition features.

4.2.7 Property

A property is the abstract formalization of a characteristic of a category that is relevant to the
model. A property is an abstraction of the underlying characteristic and does not express
whether it will be implemented as an attribute or a semi-association.

For example, the Person class in a model could initially contain an Address property; this
captures the need to take into account the fact that people have addresses, but does not
specify whether the property is to be implemented as an attribute or a semi-association of the
Person class to some other class. Further versions of the model may refine the Address
property into an attribute or a semi-association.

A class that contains one or more properties cannot be instantiated (i.e. there cannot be
objects of that class), since no implementation is provided for the property.

This class specializes from Feature.

ConML Technical Specification · version 1.5.1

13

Figure 4 shows a portion of the ConML metamodel including the Property class.

4.2.7.1 Attributes

Name Type Description

Name multilingual string [Inherited from Type] The name of the property. For
example, “Address”.

Definition multilingual string [Inherited from Type] The definition of the property, in
natural language.

MinimumCardinality int [Inherited from Feature] The minimum number of
pieces of data or objects that may be related to the
associated characteristic.

MaximumCardinality int [Inherited from Feature] The maximum number of
pieces of data or objects that may be related to the
associated characteristic.

IsSorted bool [Inherited from Feature] Whether multiple instances of
the implemented property will be sorted in a specific
order.

IsConstant bool [Inherited from Feature] Whether the property has
constant semantics, i.e. no changes may be made to
instances of the implemented property. See
Temporality, p. 37.

IsTemporal bool [Inherited from Feature] Whether the property has
temporal semantics, i.e. changes to the instances of
the implemented property may entail different phase
parts of the associated object. See Temporality, p. 37.

IsSubjective bool [Inherited from Feature] Whether the property has
subjective semantics, i.e. changes to the instances of
the implemented property may entail different
perspective parts of the associated object. See
Subjectivity, p. 38.

4.2.7.2 Associations

Name/Role Opposite class Description

IsTaggedWith Tag [Inherited from ModelElement] A property may be
tagged with a number of tags.

IsDocumentedBy/
Metainformation

Object [Inherited from ModelElement] A property may be
documented by a number of metainformation objects
(see Metainformation, p. 43).

BelongsTo/
OwnerModel

TypeModel [Inherited from TypeModelElement] A property always
belongs to an owner type model.

Redefines/
RedefinedOriginal

Property [Redefined from Feature] A property may redefine a
given original property. See Feature Redefinition, p. 35.

IsRedefinedBy/
Redefinition

Property [Redefined from Feature] A property may be the
original that is redefined by a number of redefinition
properties. See Feature Redefinition, p. 35.

/Owner Class A property is always owned by a given owner class.

n/a Class A property is always assigned to one or more classes.

4.2.8 Attribute

An attribute is the formalization of an atomic characteristic of a category that is relevant to the
model. An attribute always corresponds to an atomic characteristic, i.e. it cannot be
decomposed into simpler parts as far as the model is concerned.

ConML Technical Specification · version 1.5.1

14

For example, the Site class in a model about archaeology may contain attributes such as Name
or Dimensions.

This class specializes from Feature.

Figure 4 and Figure 6 show portions of the ConML metamodel including the Attribute class.

4.2.8.1 Attributes

Name Type Description

Name multilingual string [Inherited from Type] The name of the attribute. For
example, “Dimensions”.

Definition multilingual string [Inherited from Type] The definition of the attribute, in
natural language.

MinimumCardinality int [Inherited from Feature] The minimum number of
values that may be associated to this attribute.

MaximumCardinality int [Inherited from Feature] The maximum number of
values that may be associated to this attribute.

IsSorted bool [Inherited from Feature] Whether multiple instances of
the attribute (i.e. values) are sorted in a specific order.

IsConstant bool [Inherited from Feature] Whether the attribute has
constant semantics, i.e. no changes may be made to
the values of this attribute. See Temporality, p. 37.

IsTemporal bool [Inherited from Feature] Whether the attribute has
temporal semantics, i.e. changes to the values of this
attribute may entail different phase parts of the
associated object. See Temporality, p. 37.

IsSubjective bool [Inherited from Feature] Whether the attribute has
subjective semantics, i.e. changes to the values of this
attribute may entail different perspective parts of the
associated object. See Subjectivity, p. 38.

IsMultilingual bool Whether the attribute has multilingual semantics, i.e.
changes to the values of this attribute may entail
different translation parts of the associated object. See
Multilingualism, p. 40.

4.2.8.2 Associations

Name/Role Opposite class Description

IsTaggedWith Tag [Inherited from ModelElement] An attribute may be
tagged with a number of tags.

IsDocumentedBy/
Metainformation

Object [Inherited from ModelElement] An attribute may be
documented by a number of metainformation objects
(see Metainformation, p. 43).

BelongsTo/
OwnerModel

TypeModel [Inherited from TypeModelElement] An attribute
always belongs to an owner type model.

Redefines/
RedefinedOriginal

Property [Redefined from Feature] An attribute may redefine a
given original attribute. See Feature Redefinition, p. 35.

IsRedefinedBy/
Redefinition

Property [Redefined from Feature] An attribute may be the
original that is redefined by a number of redefinition
attributes. See Feature Redefinition, p. 35.

/Owner Class An attribute is always owned by a given owner class.

n/a Class An attribute is always assigned to one or more classes.

IsOfType/Type DataType An attribute is always of a given data type.

/Instance ValueSet An attribute may have a number of instance value sets.

ConML Technical Specification · version 1.5.1

15

4.2.9 DataType

A data type is a specification of what kind of data may be used to represent atomic values.
Atomic values are those that cannot be decomposed in simpler parts as far as the model is
concerned.

This is an abstract class, which specializes from Type and is further specialized into SimpleData-
Type and EnumeratedType.

Figure 6 shows a portion of the ConML metamodel including the DataType class.

4.2.9.1 Attributes

Name Type Description

Name multilingual string [Inherited from Type] The name of the data type. For
example, “Number”.

Definition multilingual string [Inherited from Type] The definition of the data type,
in natural language.

4.2.9.2 Associations

Name/Role Opposite class Description

IsTaggedWith Tag [Inherited from ModelElement] A data type may be
tagged with a number of tags.

IsDocumentedBy/
Metainformation

Object [Inherited from ModelElement] A data type may be
documented by a number of metainformation objects
(see Metainformation, p. 43).

BelongsTo/
OwnerModel

TypeModel [Inherited from TypeModelElement] A data type
always belongs to an owner type model.

n/a Attribute A data type may be the type of a number of attributes.

Figure 6. Fragment of the ConML metamodel showing the DataType class, its subclasses and other related
metamodel elements.

4.2.10 SimpleDataType

A simple data type is a data type that represents values of one of the pre-defined base data
types.

All simple data types, such as Number or Text, are defined by the ConML specification. No
additional simple data types may be added.

This class specializes from DataType.

Figure 6 shows a portion of the ConML metamodel including the SimpleDataType class.

DataType

/Name: string

/Definition: string

SimpleDataType

Base: BaseDataType

EnumeratedType

IsOfType1 0..*

Type

EnumeratedItem

Name: string

AbsoluteName: string

Definition: string

1 Owner OwnsItems

HasItems1..*

0..* 0..*

SubItem

0..*

SuperItem0..1

SpecializesFrom

Generalized
EnumeratedType

0..1

SpecializedEnumeratedType

0..*

«enumeration»
BaseDataType

Boolean

Number

Time

Text

Data

Attribute

ConML Technical Specification · version 1.5.1

16

4.2.10.1 Attributes

Name Type Description

Name multilingual string [Inherited from Type] The name of the simple data
type; this always corresponds to the text value of the
DataType attribute. For example, “Number”.

Definition multilingual string [Inherited from Type] The definition of the simple data
type, in natural language.

Base BaseDataType The base data type this simple data type refers to.

4.2.10.2 Associations

Name/Role Opposite class Description

IsTaggedWith Tag [Inherited from ModelElement] A simple data type
may be tagged with a number of tags.

IsDocumentedBy/
Metainformation

Object [Inherited from ModelElement] A simple data type
may be documented by a number of metainformation
objects (see Metainformation, p. 43).

BelongsTo/
OwnerModel

TypeModel [Inherited from TypeModelElement] A simple data
type always belongs to an owner type model.

n/a Attribute [Inherited from DataType] A simple data type may be
the type of a number of attributes.

4.2.11 BaseDataType

This enumeration corresponds to the pre-defined base data types that exist in any model
expressed in ConML.

Figure 6 shows a portion of the ConML metamodel including the BaseDataType enumeration.

4.2.11.1 Elements

Name Description

Boolean Values may only be true or false.

Number Values are real numbers; integer or not; positive, zero or negative.

Time Values are time points of variable precision, and not limited to the usual
scheme of days, months, years, hours, minutes and seconds.

Text Values are character strings of arbitrary length, including zero length (i.e.
empty strings). They can be multilingual.

Data Values are raw, uninterpreted data (i.e. byte lists) of arbitrary length, including
zero length.

A complete description of the semantics of the pre-defined base data types is given in
Semantics of Data Types, p. 32.

4.2.12 EnumeratedType

An enumerated type is a data type that defines a list of named items that can be associated to
a value of this type. Enumerated types, in opposition to simple data types, are defined by the
ConML user as part of the model, rather than being pre-defined by ConML itself. A complete
description of the semantics of enumerated types is given in Semantics of Data Types, p. 32.

For example, a model that includes an Artefact class with a Material attribute might also
include an ArtefactMaterial enumerated type that lists possible values for that attribute, such
as Clay, Metal, Wood, etc.

This class specializes from DataType.

Figure 6 shows a portion of the ConML metamodel including the EnumeratedType class.

ConML Technical Specification · version 1.5.1

17

4.2.12.1 Attributes

Name Type Description

Name multilingual string [Inherited from Type] The name of the enumerated
type. For example, “ArtefactMaterial”.

Definition multilingual string [Inherited from Type] The definition of the
enumerated type, in natural language.

4.2.12.2 Associations

Name/Role Opposite class Description

IsTaggedWith Tag [Inherited from ModelElement] An enumerated type
may be tagged with a number of tags.

IsDocumentedBy/
Metainformation

Object [Inherited from ModelElement] An enumerated type
may be documented by a number of metainformation
objects (see Metainformation, p. 43).

BelongsTo/
OwnerModel

TypeModel [Inherited from TypeModelElement] An enumerated
type always belongs to an owner type model.

n/a Attribute [Inherited from DataType] An enumerated type may
be the type a number of attributes.

OwnsItems EnumeratedItem An enumerated type may own multiple enumerated
items.

HasItems EnumeratedItem An enumerated type may have multiple enumerated
items. These include the owned plus the inherited
enumerated items (see Generalization of Enumerated
Types, p. 33).

SpecializesFrom
/Generalized-
EnumeratedType

EnumeratedType An enumerated type may specialize from a generalized
enumerated type.

/Specialized-
EnumeratedType

EnumeratedType An enumerated type may be generalized from a
number of specialized enumerated types.

n/a Package An enumerated type may belong to a package.

4.2.13 EnumeratedItem

An enumerated item is a unique name within a given enumerated type. Enumerated items can
be hierarchically arranged within an enumerated type, so that subsumption or whole/part
relationships are conveyed (see Enumerated Item Hierarchies, p. 33).

For example, the ArtefactMaterial enumerated type in the previous example may include
enumerated items Clay, Metal, Metal/Iron, Metal/Brass, Wood, Wood/Birch,
Wood/Birch/SilverBirch, Wood/Birch/WhiteBirch, Wood/Oak, etc. The Wood/Birch and
Wood/Oak enumerated items are sub-items of the Wood item; similarly,
Wood/Birch/SilverBirch and Wood/Birch/WhiteBirch are sub-items of Wood/Birch.

This class specializes from TypeModelElement.

Figure 6 shows a portion of the ConML metamodel including the EnumeratedItem class.

4.2.13.1 Attributes

Name Type Description

Name multilingual string The name of the enumerated item. This is a local name
and does not take into account the position of the item
within the hierarchy. For example, “Birch”.

AbsoluteName multilingual string The absolute name of the enumerated item, taking
into account the position that it occupies in the
hierarchy. For example, “Wood/Birch”.

ConML Technical Specification · version 1.5.1

18

Name Type Description

Definition multilingual string The definition of the enumerated item, in natural
language.

4.2.13.2 Associations

Name/Role Opposite class Description

IsTaggedWith Tag [Inherited from ModelElement] An enumerated item
may be tagged with a number of tags.

IsDocumentedBy/
Metainformation

Object [Inherited from ModelElement] An enumerated item
may be documented by a number of metainformation
objects (see Metainformation, p. 43).

BelongsTo/
OwnerModel

TypeModel [Inherited from TypeModelElement] An enumerated
item always belongs to an owner type model.

/Owner EnumeratedType An enumerated item always has a given owner
enumerated type.

n/a EnumeratedType An enumerated item is always assigned to one or more
enumerated types.

/SuperItem EnumeratedItem An enumerated item may have a super-item, of which
it is a sub-item.

/SubItem EnumeratedItem An enumerated item may have multiple sub-items, of
which it is the super-item.

4.2.14 SemiAssociation

A semi-association is the description of an association from the viewpoint of one of the classes
that participate in it. A semi-association always has an inverse semi-association, which
describes the same association seen from the opposite end, i.e. from the viewpoint of the class
at the other end. In the context of any given semi-association, the class that gives it its
viewpoint, i.e. the class that owns the semi-association, is called the participant class. The class
the semi-association refers to, i.e. the class at the opposite end (which is usually the
participant class of the inverse semi-association) is called the opposite class. A particular case
occurs for symmetric self-associations, for which the participant and opposite classes are the
same, and a semi-association’s inverse is itself (see Symmetric Self-Associations, p. 37).

For example, the Site class in a model about archaeology might be associated to the Structure
class via the Contains semi-association (a site contains structures). Site would be the
participant class of Contains, and Structure would be the opposite class. Looking at this from
the opposite viewpoint, a different semi-association would exist, inverse to the former, and
probably named IsLocatedOn (a structure is located on a site). Contains and IsLocatedOn are
inverse semi-associations that define the same association.

This class specializes from Feature.

Figure 4 and Figure 7 show portions of the ConML metamodel including the SemiAssociation
class.

4.2.14.1 Attributes

Name Type Description

Name multilingual string [Inherited from Type] The name of the semi-
association. For example, “Contains”.

Definition multilingual string [Inherited from Type] The definition of the s, in natural
language.

MinimumCardinality int [Inherited from Feature] The minimum number of
objects of the opposite class that may be linked to an
object of the participant class through this semi-
association.

ConML Technical Specification · version 1.5.1

19

Name Type Description

MaximumCardinality int [Inherited from Feature] The maximum number of
objects of the opposite class that may be linked to an
object of the participant class through this semi-
association.

IsSorted bool [Inherited from Feature] Whether objects reachable
through multiple links of this semi-association are
sorted in a specific order.

IsConstant bool [Inherited from Feature] Whether the semi-association
has constant semantics, i.e. no changes may be made
to the references of this semi-association. See
Temporality, p. 37.

IsTemporal bool [Inherited from Feature] Whether the semi-association
has temporal semantics, i.e. changes to the references
of this semi-association may entail different phase
parts of the associated object. See Temporality, p. 37.

IsSubjective bool [Inherited from Feature] Whether the semi-association
has subjective semantics, i.e. changes to the
references of this semi-association may entail different
perspective parts of the associated object. See
Subjectivity, p. 38.

Role multilingual string The role that the opposite class plays in the association
from this viewpoint, expressed in singular regardless of
the associated cardinality. For example, “Owner”.

IsWhole bool Indicates whether the participant class possesses
“whole” semantics in a “whole/part” relationship. This
means that the participant class is defined as an
aggregate of the opposite class, which has “part”
semantics.

IsStrong bool Indicates whether the participant class is strongly
connected to the opposite class through this semi-
association. This means that the semi-association plays
a significant role in the definition of the participant
class.

4.2.14.2 Associations

Name/Role Opposite class Description

IsTaggedWith Tag [Inherited from ModelElement] A semi-association
may be tagged with a number of tags.

IsDocumentedBy/
Metainformation

Object [Inherited from ModelElement] A semi-association
may be documented by a number of metainformation
objects (see Metainformation, p. 43).

BelongsTo/
OwnerModel

TypeModel [Inherited from TypeModelElement] A semi-
association always belongs to an owner type model.

Redefines/
RedefinedOriginal

Property [Redefined from Feature] A semi-association may
redefine a given original semi-association. See Feature
Redefinition, p. 35.

IsRedefinedBy/
Redefinition

Property [Redefined from Feature] A semi-association may be
the original that is redefined by a number of
redefinition semi-associations. See Feature
Redefinition, p. 35.

IsInverseOf/Inverse SemiAssociation A semi-association always has an inverse semi-
association.

ConML Technical Specification · version 1.5.1

20

Name/Role Opposite class Description

/Owner Class A semi-association is always owned by a given owner
class.

n/a Class A semi-association is always assigned to one or more
classes.

RefersTo
/OppositeClass

Class A semi-association always refers to a given opposite
class.

/Instance ReferenceSet A semi-association may have a number of instance
reference sets.

IsPrimaryIn Association A semi-association may be primary in a given
association.

IsSecondaryIn Association A semi-association may be secondary in a given
association.

Figure 7. Fragment of the ConML metamodel showing the Association and SemiAssociation classes.

4.2.15 Association

An association is the formalization of a structural connection relationship between two
categories that is relevant to the model. An association is always defined through semi-
associations that are inverse of each other, i.e. describe the association as seen from opposite
and complementary viewpoints. One semi-association is called primary and is used to name
and describe the association as a whole, whereas the inverse semi-association is called
secondary. Usually, two different semi-associations are involved; a particular case occurs in the
case of symmetric self-associations, for which the primary and secondary semi-associations are
the same (see Symmetric Self-Associations, p. 37).

For example, the Site class in a model about archaeology might be associated to the Structure
class via the Contains semi-association (a site contains structures). From the opposite
viewpoint, a different semi-association would exist, inverse to the former, and probably named
IsLocatedIn (a structure is located in a site). Contains is the primary semi-association and Is-
LocatedIn is the secondary one; both are inverse semi-associations that define the same
association.

This class specializes from Type.

Figure 7 shows a portion of the ConML metamodel including the Association class.

Association

/Name: string

/Definition: string

SemiAssociation

/Name: string

/Definition: string

/Min imumCardinality: int

/MaximumCardinality: in t

/IsSorted: bool

/IsConstant: bool

/IsTemporal: bool

/IsSubjective: bool

Role: string

IsWhole: bool

IsStrong: bool

Primary

Secondary

1

1

0..10..1

IsInverseOf

1 Inverse

0..*

1Owner

0..*

1..*

OwnsSemiAssociations

HasSemiAssociations

RefersTo

OppositeClass1

0..*

Class

ConML Technical Specification · version 1.5.1

21

4.2.15.1 Attributes

Name Type Description

Name multilingual string [Inherited from Type] The name of the association,
which coincides with that of its primary semi-
association. For example, “Contains”.

Definition multilingual string [Inherited from Type] The definition of the association,
in natural language.

4.2.15.2 Associations

Name/Role Opposite class Description

IsTaggedWith Tag [Inherited from ModelElement] An association may be
tagged with a number of tags.

IsDocumentedBy/
Metainformation

Object [Inherited from ModelElement] An association may be
documented by a number of metainformation objects
(see Metainformation, p. 43).

BelongsTo/
OwnerModel

TypeModel [Inherited from TypeModelElement] An association
always belongs to an owner type model.

HasPrimary/Primary SemiAssociation An association always has a primary semi-association.

HasSecondary
/Secondary

SemiAssociation An association always has a secondary semi-
association.

/Instance Link An association may have a number of instance links.

4.2.16 Package

A package is a group of related classes, enumerated types and possibly sub-packages.

This class specializes from TypeModelElement.

Figure 8 shows the Package class in the context of the Types package.

4.2.16.1 Attributes

Name Type Description

Name multilingual string The name of the package. For example,
“Organization”.

Description multilingual string The description of the package, in natural language.

4.2.16.2 Associations

Name/Role Opposite class Description

IsTaggedWith Tag [Inherited from ModelElement] A package may be
tagged with a number of tags.

IsDocumentedBy/
Metainformation

Object [Inherited from ModelElement] A package may be
documented by a number of metainformation objects
(see Metainformation, p. 43).

BelongsTo/
OwnerModel

TypeModel [Inherited from TypeModelElement] A package always
belongs to an owner type model.

n/a Class A package may contain a number of classes.

n/a EnumeratedType A package may contain a number of enumerated
types.

/Owner Package A package may be contained in an owner package.

/SubPackage Package A package may be the owner of a number of sub-
packages.

ConML Technical Specification · version 1.5.1

22

Figure 8. Fragment of the ConML metamodel showing the Package class in the Types package.

4.3 Instances Package

The following sections describe the classes and associated elements in this package.

4.3.1 InstanceModel

An instance model is a model that contains instances.

For example, an instance model could contain instances describing that person p1, who is 38
years old, owns house h1 located in Moscow, in which person p2 also lives.

This class specializes from Model.

Figure 2 shows InstanceModel class in context.

4.3.1.1 Attributes

Name Type Description

Name multilingual string [Inherited from Model] The name of the instance
model.

Version object [Inherited from Model] The version of the instance
model. This can be displayed as a string (e.g.
“1.0.15.206”) and has comparable semantics that take
into account each numeric element in the version
string.

Description multilingual string [Inherited from Model] The description of the instance
model, in natural language.

4.3.1.2 Associations

Name/Role Opposite class Description

HasTags Tag [Inherited from Model] An instance model may have a
number of tags.

HasLanguages Language [Inherited from Model] An instance model has a
number of languages.

HasDefaultLanguage Language [Inherited from Model] An instance model has a
default language.

OwnsElements InstanceModel-
Element

[Redefined from Model] An instance model may own a
number of instance model elements.

ConformsTo TypeModel An instance model always conforms to at least one
type model.

4.3.2 InstanceModelElement

An instance model element is an element in an instance model.

This is an abstract class, which specializes from ModelElement and is further specialized into
Instance and Facet.

Figure 1 shows an overview of the main model element types in ConML.

Package

Name: string

Description: string

SubPackage

0..*

Owner

0..1

0..*0..*

0..1 0..1

Class EnumeratedType

ConML Technical Specification · version 1.5.1

23

4.3.2.1 Attributes

Name Type Description

(this class has no attributes)

4.3.2.2 Associations

Name/Role Opposite class Description

BelongsTo/
OwnerModel

InstanceModel [Redefined from ModelElement] An instance model
element always belongs to an owner instance model.

IsTaggedWith Tag [Inherited from ModelElement] An instance model
element may be tagged with a number of tags.

IsDocumentedBy/
Metainformation

Object [Inherited from ModelElement] An instance model
element may be documented by a number of
metainformation objects (see Metainformation, p. 43).

4.3.3 Instance

An instance is an element in an instance model that is a particular occurrence of a type in the
type model to which the instance model conforms.

For example, an instance can represent a thing such as person p1 or house h2 (i.e. objects), a
piece of data about a thing such as Age = 38 (i.e. a value), or a connection between two things
such as p1 Owns h2 (i.e. a link).

This is an abstract class, which specializes from InstanceModelElement and is further
specialized into Object, FacetSet and Link.

Figure 1 shows an overview of ConML including the Instance class in context.

4.3.3.1 Attributes

Name Type Description

(this class has no attributes)

4.3.3.2 Associations

Name/Role Opposite class Description

IsTaggedWith Tag [Inherited from ModelElement] An instance may be
tagged with a number of tags.

IsDocumentedBy/
Metainformation

Object [Inherited from ModelElement] An instance may be
documented by a number of metainformation objects
(see Metainformation, p. 43).

BelongsTo/
OwnerModel

InstanceModel [Inherited from InstanceModelElement] An instance
always belongs to an owner instance model.

ConML Technical Specification · version 1.5.1

24

Figure 9. Overview of the Instances package.

4.3.4 Object

An object is the formalization of an entity that is relevant to the model. The entity represented
by an object may be a real one or it may correspond to a fictitious entity that is used, for
example, for illustration or simulation purposes. Any given object is an instance of a given
class.

For example, a model about archaeology may show objects that represent specific sites such
as Stonehenge or Mount Athos.

This class specializes from Instance.

Figure 9 shows a portion of the ConML metamodel including the Object class.

4.3.4.1 Attributes

Name Type Description

Identifier string The identifier or unique name of the object. For
example, “site173”. Object identifiers cannot coincide
with a ConML keyword (see Keywords, p. 57).

Certainty DegreeOfCertainty The degree of certainty for the existence conveyed by
the object (see Vagueness, p. 39).

4.3.4.2 Associations

Name/Role Opposite class Description

IsTaggedWith Tag [Inherited from ModelElement] An object may be
tagged with a number of tags.

IsDocumentedBy/
Metainformation

Object [Inherited from ModelElement] An object may be
documented by a number of metainformation objects
(see Metainformation, p. 43).

BelongsTo/
OwnerModel

InstanceModel [Inherited from InstanceModelElement] An object
always belongs to an owner instance model.

IsAnInstanceOf/
Type

Class An object is always an instance of a given type class.

OwnsValueSets ValueSet An object possesses multiple value sets, one per
attribute assigned to the corresponding class.

Object

Identifier: string

Certainty: DegreeOfCertainty

ValueSet

Value

/Certain ty: DegreeOfCertain ty

Contents: object

ReferenceSet

Reference

/Certainty: DegreeOfCertainty

IsAnInstanceOf

IsAnInstanceOf

Type

Type

Instance

Instance

1

1

0..*

0..*

0..*

0..*

1

1

0..*

0..*

1

1

FacetSet

PhaseQualifier

PerspectiveQualifier

0..1

0..1

RefersTo

0..1

O
p

p
o

si
te

0..*

Link

Is
A

n
In

st
a

n
ce

O
f

Primary

Secondary

0..1

0..1

Type

Instance

1

0..*

Is
A

n
In

st
a

n
ce

O
f

Type

1

In
st

a
nc

e

0..*

0..1

0..1

IsInverseOf

In
ve

rs
e 0..1

O
w

n
er

O
w

n
er

Owner

Owner

0..*

0..*

Attribute

Class

SemiAssociation

Association

Object

PhaseQualifier

0..1

PerspectiveQualifier

0..1

0..* 0..*

«enumeration»
DegreeOfCertainty

Certain

Probable

Possible

Improbable

Impossible

ConML Technical Specification · version 1.5.1

25

Name/Role Opposite class Description

OwnsReferenceSets ReferenceSet An object possesses multiple reference sets, one per
semi-association assigned to the corresponding class.

IsOppositeIn Reference An object may be opposite in a number of references.

IsPhaseQualifierOf FacetSet An object may be the phase qualifier of a number of
facet sets (see Temporality, p. 37).

IsPerspective-
QualifierOf

FacetSet An object may be the perspective qualifier of a number
of facet sets (see Subjectivity, p. 38).

/TemporalExistential-
Qualifier

Object An object may have another object as temporal
existential qualifier (see Temporality, p. 37).

/Subjective-
ExistentialQualifier

Object An object may have another object as subjective
existential qualifier (see Subjectivity, p. 38).

IsTemporalExistence-
QualifierOf

Object An object may be the temporal existence qualifier of a
number of other objects (see Temporality, p. 37).

IsSubjective-
ExistenceQualifierOf

Object An object may be the subjective existence qualifier of a
number of other objects (see Subjectivity, p. 38).

Documents ModelElement An object may document a number of model elements
(see Metainformation, p. 43).

4.3.5 DegreeOfCertainty

This enumeration corresponds to the different degrees of certainty that an instance model
may express about a fact.

Figure 9 shows a portion of the ConML metamodel including the DegreeOfCertainty
enumeration.

4.3.5.1 Elements

Name Description

Certain The expressed fact is known to be true.

Probable The expressed fact is probably true.

Possible The expressed fact is possibly true.

Improbable The expressed fact is probably not true.

Impossible The expressed fact is known to be not true.

A complete description of the semantics of the different degrees of certainty is given in
Vagueness, p. 39.

4.3.6 FacetSet

A facet set is the formalization of a quality of an entity that is relevant to the model according
to a feature in the associated class. Any given facet set belongs to a particular object and is an
instance of a particular feature of the associated class.

This is an abstract class, which specializes from Instance and is further specialized into Value-
Set and ReferenceSet.

Figure 9 shows a portion of the ConML metamodel including the FacetSet class.

4.3.6.1 Attributes

Name Type Description

(this class has no attributes)

4.3.6.2 Associations

Name/Role Opposite class Description

IsTaggedWith Tag [Inherited from ModelElement] A facet set may be
tagged with a number of tags.

ConML Technical Specification · version 1.5.1

26

Name/Role Opposite class Description

IsDocumentedBy/
Metainformation

Object [Inherited from ModelElement] A facet set may be
documented by a number of metainformation objects
(see Metainformation, p. 43).

BelongsTo/
OwnerModel

InstanceModel [Inherited from InstanceModelElement] A facet set
always belongs to an owner instance model.

/PhaseQualifier Object A facet set may have a particular object as phase
qualifier (see Temporality, p. 37).

/PerspectiveQualifier Object A facet set may have a particular object as perspective
qualifier (see Subjectivity, p. 38).

IsComposedOf Facet A facet set is composed of a number of facets.

4.3.7 ValueSet

A value set is a facet set that corresponds to an instance of an attribute. Any given value set is
a collection of values.

For example, the Stonehenge object in a model about archaeology may contain a value set
instantiated from the Chronology attribute containing the value Chronology = “2500 BC”.

This class specializes from FacetSet.

Figure 9 shows a portion of the ConML metamodel including the ValueSet class.

4.3.7.1 Attributes

Name Type Description

(this class has no attributes)

4.3.7.2 Associations

Name/Role Opposite class Description

IsTaggedWith Tag [Inherited from ModelElement] A value set may be
tagged with a number of tags.

IsDocumentedBy/
Metainformation

Object [Inherited from ModelElement] A value set may be
documented by a number of metainformation objects
(see Metainformation, p. 43).

BelongsTo/
OwnerModel

InstanceModel [Inherited from InstanceModelElement] A value set
always belongs to an owner instance model.

IsComposedOf Value [Redefined from FacetSet] A value set is composed of a
number of values.

/PhaseQualifier Object [Inherited from FacetSet] A value set may have a
particular object as phase qualifier (see Temporality, p.
37).

/PerspectiveQualifier Object [Inherited from FacetSet] A value set may have a
particular object as perspective qualifier (see
Subjectivity, p. 38).

/TranslationQualifier Language A value set may have a particular language as
translation qualifier (see Multilingualism, p. 40).

IsAnInstanceOf/
Type

Attribute A value set is always an instance of a given type
attribute.

/Owner Object A value set is always owned by a given owner object.

4.3.8 ReferenceSet

A reference set is a facet set that corresponds to an instance of a semi-association. Any given
reference set is a collection of references.

ConML Technical Specification · version 1.5.1

27

For example, the Stonehenge object of class Site in a model about archaeology may contain a
reference set instantiated from the IsLocatedIn semi-association containing a reference
pointing to object Wiltshire, UK of class Place.

This class specializes from FacetSet.

Figure 9 shows a portion of the ConML metamodel including the ReferenceSet class.

4.3.8.1 Attributes

Name Type Description

(this class has no attributes)

4.3.8.2 Associations

Name/Role Opposite class Description

IsTaggedWith Tag [Inherited from ModelElement] A reference set may be
tagged with a number of tags.

IsDocumentedBy/
Metainformation

Object [Inherited from ModelElement] A reference set may be
documented by a number of metainformation objects
(see Metainformation, p. 43).

BelongsTo/
OwnerModel

InstanceModel [Inherited from InstanceModelElement] A reference
set always belongs to an owner instance model.

IsComposedOf Reference [Redefined from FacetSet] A reference set is composed
of a number of references.

/PhaseQualifier Object [Inherited from FacetSet] A reference set may have a
particular object as phase qualifier (see Temporality, p.
37).

/PerspectiveQualifier Object [Inherited from FacetSet] A reference set may have a
particular object as perspective qualifier (see
Subjectivity, p. 38).

IsAnInstanceOf/
Type

SemiAssociation A reference set is always an instance of a given type
semi-association.

/Owner Object A reference set is always owned by a given owner
object.

4.3.9 Facet

A facet is the formalization of an atomic quality of an entity that is relevant to the model. Any
given facet is part of a particular facet set, which is in turn an instance of a particular feature.

This is an abstract class, which specializes from InstanceModelElement and is further
specialized into Value and Reference.

4.3.9.1 Attributes

Name Type Description

Certainty DegreeOfCertainty The degree of certainty for the predication conveyed
by the facet (see Vagueness, p. 39).

4.3.9.2 Associations

Name/Role Opposite class Description

IsTaggedWith Tag [Inherited from ModelElement] A facet may be tagged
with a number of tags.

IsDocumentedBy/
Metainformation

Object [Inherited from ModelElement] A facet may be
documented by a number of metainformation objects
(see Metainformation, p. 43).

BelongsTo/
OwnerModel

InstanceModel [Inherited from InstanceModelElement] A facet always
belongs to an owner instance model.

/Set FacetSet A facet is always owned by a given facet set.

ConML Technical Specification · version 1.5.1

28

4.3.10 Value

A value is a facet corresponding to a piece of data. Any given value is part of a given value set,
which is in turn an instance of a particular attribute.

For example, the Stonehenge object in a model about archaeology may contain a value set
instantiated from the Chronology attribute containing the value Chronology = “2500 BC”.

This class specializes from Facet.

Figure 9 shows a portion of the ConML metamodel including the Value class.

4.3.10.1 Attributes

Name Type Description

Certainty DegreeOfCertainty [Inherited from Facet] The degree of certainty for the
predication conveyed by the value (see Vagueness, p.
39).

Contents object The actual data contained in the value. For example,
“2500 BC”. Empty (i.e. null) contents in a value indicate
unknown semantics (see Null and Unknown Semantics,
p. 36).

4.3.10.2 Associations

Name/Role Opposite class Description

IsTaggedWith Tag [Inherited from ModelElement] A value may be tagged
with a number of tags.

IsDocumentedBy/
Metainformation

Object [Inherited from ModelElement] A value may be
documented by a number of metainformation objects
(see Metainformation, p. 43).

BelongsTo/
OwnerModel

InstanceModel [Inherited from InstanceModelElement] A value always
belongs to an owner instance model.

/Set ValueSet [Redefined from Facet] A value is always owned by a
given value set.

4.3.11 Reference

A reference is a facet corresponding to a pointer to an object, which describes a link from the
viewpoint of one of the objects that participate in it. Any given reference is part of a given
reference set, which is in turn an instance of a particular semi-association. A reference usually
has an inverse reference, which describes the same link seen from the opposite end, i.e. from
the viewpoint of the object at the other end. References that link an object to an unknown
object lack an inverse. In the context of any given reference, the object that gives it its
viewpoint, i.e. the object that owns the reference, is called the participant object. The object
the reference refers to, i.e. the object at the opposite end (which is always the participant
object of the inverse reference) is called the opposite object.

For example, the Stonehenge object of class Site in a model about archaeology may contain a
reference set instantiated from the IsLocatedIn semi-association containing a reference
pointing to object Wiltshire, UK of class Place. Looking at this from the opposite viewpoint, a
different reference would exist, inverse to the former, and possibly named Contains, owned by
participant object Wiltshire, UK and referencing object Stonehenge.

This class specializes from Facet.

Figure 9 shows a portion of the ConML metamodel including the Reference class.

ConML Technical Specification · version 1.5.1

29

4.3.11.1 Attributes

Name Type Description

Certainty DegreeOfCertainty [Inherited from Facet] The degree of certainty for the
predication conveyed by the reference (see
Vagueness, p. 39).

4.3.11.2 Associations

Name/Role Opposite class Description

IsTaggedWith Tag [Inherited from ModelElement] A reference may be
tagged with a number of tags.

IsDocumentedBy/
Metainformation

Object [Inherited from ModelElement] A reference may be
documented by a number of metainformation objects
(see Metainformation, p. 43).

BelongsTo/
OwnerModel

InstanceModel [Inherited from InstanceModelElement] A reference
always belongs to an owner instance model.

/Set ReferenceSet [Redefined from Facet] A reference is always owned by
a given reference set.

IsInverseOf/Inverse Reference A reference usually has an inverse reference. Only
references that point to an unknown object lack an
inverse reference (see Null and Unknown Semantics, p.
36).

RefersTo/Opposite Object A reference always refers to an opposite object, unless
it points to an unknown object (see Null and Unknown
Semantics, p. 36).

IsPrimaryIn Link A reference may be primary in a given link.

IsSecondaryIn Link A reference may be secondary in a given link.

4.3.12 Link

A link is the formalization of a connection between two entities that is relevant to the model.
Any given link is an instance of a given association and links a primary and a secondary object
as dictated by the primary and secondary semi-associations of the corresponding association.
A link is usually defined through two references that are inverse of each other, i.e. describe the
link as seen from opposite and complementary viewpoints. One reference is called primary
and is used to name and describe the link as a whole, whereas the inverse reference is called
secondary. An exception occurs in the case of objects linked to an unknown object; in these
cases, only one reference (either the primary or the secondary) is associated to the link.

For example, the Stonehenge object (a site) in the model about archaeology may be linked to
the Wiltshire, UK object (a place) in the form of a link; this link would be an instance of the
association defined by the semi-association IsLocatedOn plus its inverse.

This class specializes from Instance.

Figure 9 shows a portion of the ConML metamodel including the Link class.

4.3.12.1 Attributes

Name Type Description

(this class has no attributes)

4.3.12.2 Associations

Name/Role Opposite class Description

IsTaggedWith Tag [Inherited from ModelElement] A link may be tagged
with a number of tags.

ConML Technical Specification · version 1.5.1

30

Name/Role Opposite class Description

IsDocumentedBy/
Metainformation

Object [Inherited from ModelElement] A link may be
documented by a number of metainformation objects
(see Metainformation, p. 43).

BelongsTo/
OwnerModel

InstanceModel [Inherited from InstanceModelElement] A link always
belongs to an owner instance model.

IsAnInstanceOf/
Type

Association A link is always an instance of a given type association.

HasPrimary/
Primary

Reference A link usually has a primary reference. Only links from
an unknown object lack a primary reference (see Null
and Unknown Semantics, p. 36).

HasSecondary
/Secondary

Reference A link usually has a secondary reference. Only links to
an unknown object lack a secondary reference (see
Null and Unknown Semantics, p. 36).

4.4 Namespaces

Certain realms in a model define independent spaces where names given to model parts must
be unique. These independent spaces are called namespaces. Namespaces roughly correspond
to the groups of classes in the metamodel given by whole/part relationships. Namespaces are
language-local; i.e. there is a separate namespace for every language in a multilingual model
(see Multilingualism, p. 40).

The following sections explain the details of the different namespaces in ConML models.

4.4.1 Type Models

4.4.1.1 Model

Each type model is a namespace with regard to:

• The classes and data types assigned to the model and not contained in any package.
Each class or data type assigned to a type model that are not contained in a package
must have a unique name, and the name of a class or data type not contained in any
package cannot coincide with the name of another one assigned to the same type
model.

• The packages in the model. Each package in a type model that is not contained in any
package must have a unique name.

4.4.1.2 Package

Each package is a namespace with regard to:

• The classes and enumerated types in the package. Each class or enumerated type in a
package must have a unique name, and the name of a class or enumerated type in a
package cannot coincide with the name of another one in the same package.

• The sub-packages in the package. Each sub-package in a given package must have a
unique name.

4.4.1.3 Class

Each class is a namespace with regard to:

• The total collection of properties, attributes and semi-associations assigned to (i.e.
owned or inherited; see Feature Inheritance, p. 34) the class. Each property, attribute
and semi-association of a class, including those inherited, must have a unique name,
and the name of a property, attribute or semi-association cannot coincide with the

ConML Technical Specification · version 1.5.1

31

name of another. Similarly, the role of a semi-association cannot coincide with the
name of a property, attribute or semi-association.

4.4.1.4 EnumeratedType

Each enumerated type is a namespace with regard to:

• The enumerated items assigned to (i.e. owned or inherited; see Generalization of
Enumerated Types, p. 33) the enumerated type. Each enumerated item assigned to an
enumerated type must have a unique absolute name.

4.4.1.5 EnumeratedItem

Each enumerated item is a namespace with regard to:

• The sub-items owned by the enumerated item. Each sub-item of an enumerated item
must have a unique name.

4.4.2 Instance Models

4.4.2.1 Model

Each instance model is a namespace with regard to:

• The objects in the model. Each object in an instance model must have a unique
identifier.

4.4.3 Model Part Names

Model part names cannot coincide with a ConML keyword.

In some contexts, and especially for model elements, the name of a model part is not enough
to identify it within a model. This often happens when the element exists inside a namespace
and other elements with the same name exist in different namespaces. For example, a Person
class may have a Name attribute. Another class, City, may also have a Name attribute. Any
reference to “the Name attribute” is thus ambiguous, since it might point to either.

In order to resolve ambiguities like this, full names and fully qualified names are used.

4.4.3.1 Names of Languages and Tags

Languages and tags are not model elements, but still they exist within models. For this reason,
the full name of a language or tag coincides with its simple name.

4.4.3.2 Full and Relative Names of Packages

The full name of a package is composed from the full name of its owner package, if any, plus its
own name, and separated by a full stop (“.”). For example: “Organization.People.Staff”.

The relative name of a package P in relation to a containing package C is the subset of P’s full
name that stems from C. In the previous example, “People.Staff” is the relative name of the
Staff package in relation to Organization; “Staff” is the relative name of the Staff package in
relation to Organization.People.

Full and relative names of packages are meaningful within the context of the containing type
model.

4.4.3.3 Full Names of Other Elements

The full names of model elements other than packages are obtained as follows:

• If the element exists in the model directly, rather than within any other namespace in
the model, then its full name coincides with its simple name. This is the case of classes,
simple data types and enumerated types (whose Name acts as simple name), plus
objects (whose Identifier attribute acts as simple name).

ConML Technical Specification · version 1.5.1

32

• If the element exists within a sub-namespace inside the model, then its full name is
formed by its own simple name prefixed by the full name of its enclosing element plus
a full stop (“.”). This is the case of features (whose Name acts as simple name),
generalizations (whose Discriminant acts as simple name) and enumerated items
(whose AbsoluteName acts as simple name). For example, the full name of attribute
Name in class Person would be “Person.Name”. The full name of the enumerated item
Europe/Spain/Galicia of enumerated type WorldLocations would be “World-
Locations.Europe/Spain/Galicia”.

4.4.3.4 Fully Qualified Names

The fully qualified name of a model part is formed as follows:

• If the model part is a language or a tag, then its fully qualified name coincides with its
full name.

• Otherwise, the model part is a model element:

o If the element is a package, then its fully qualified name coincides with its full
name.

o Otherwise:

▪ If the model part belongs to an instance model or exists in a type
model outside of any package, then its fully qualified name coincides
with its full name.

▪ If the element is contained in a package in a type model, then its fully-
qualified name is formed by joining together the full name of the
containing package, plus a full stop (“.”), plus the element’s full name.

4.5 Further Semantics

This section describes the semantics of some complex areas that are not covered by the
descriptions of individual metamodel elements.

4.5.1 Semantics of Data Types

There are two kinds of data types in ConML: simple data types and enumerated types. Simple
data types are pre-defined and cannot be changed. Also, it is assumed that an instance of class
SimpleDataType for each element of BaseDateType is automatically included in every ConML
type model. Enumerated types, on the contrary, are defined by the user as part of a type
model.

There are some compatibility rules between data types that dictate what conversions are
possible and which are not. These rules are based on whether automatic type coercion is
possible from a source into a destination data type. These rules are important, for example,
when changing the type of an attribute through feature redefinition (see Feature Redefinition,
p. 35). The following table specifies the compatibility rules between data types.

 …be coerced into this type?

 Boolean Number Time Text Data Enumerated

C
a

n
 a

 v
a

lu
e

o
f

th
is

 t
yp

e…
 Boolean yes no no yes yes no

Number no yes no yes yes no

Time no no yes yes yes no

Text no no no yes yes no

Data no no no no yes no

ConML Technical Specification · version 1.5.1

33

 …be coerced into this type?

 Boolean Number Time Text Data Enumerated

Enumerated no no no yes yes (see text)

A value of an enumerated type can be coerced into another enumerated type only in the
following cases:

• The source and target enumerated types are the same; this is the trivial case.

• The source enumerated type is a descendant of the target enumerated type (see
Generalization of Enumerated Types, p. 33).

4.5.2 Enumerated Item Hierarchies

Enumerated items define named values within a well-known semantic domain. Enumerated
item can be organized hierarchically in order to capture subsumption, whole/part or any other
similar relationship that there might exist in said domain. For example:

• Items representing materials can be arranged to depict subsumption relationships: e.g.
Metal, Metal/Iron, Metal/Brass, Wood, etc. The hierarchy in this case captures the fact
that Iron and Brass are sub-categories of Metal.

• Items representing geographical areas can be arranged to depict whole/part
relationships: e.g. Europe, Europe/Spain, Europe/Germany, Africa, etc. The hierarchy in
this case captures the fact that Spain and Germany are parts of Europe.

Complex hierarchies can be assembled by combining criteria depending on modelling needs.

In any case, enumerated item hierarchies take the form of multi-rooted trees: each
enumerated type can have multiple root items (i.e. items with no super-items), and each item
may have at most one super-item. No mechanism equivalent to multiple generalization is
allowed for enumerated items as it is for classes.

Thus, any enumerated item in a given enumerated type is always in one of the following two
situations:

• It has no super-item; in this case, it is a root item.

• It has a super-item; in this case, it is a non-root item. The super-item must be an
enumerated item owned by the same enumerated type or, alternatively, assigned to
the generalized enumerated type, if there is one.

The absolute name of an enumerated item is equal to its name if it does not have a super-
item. If it does, then it is composed as the absolute name of its super-item plus its own name
and separated by a slash (“/”) character.

4.5.3 Generalization of Enumerated Types

An enumerated type can be defined to be specialized from another enumerated type. This
reflects the fact that the former is a semantic refinement of the latter. An enumerated type
that specializes from another is expected to add details to the latter while preserving its
semantics.

With regard to generalization/specialization hierarchies of enumerated types, the following
concepts are important:

• An enumerated type is an ancestor of another enumerated type if and only if the
former is a generalized enumerated type of the latter, or an ancestor of a generalized
enumerated type of the latter.

• An enumerated type is a descendant of another enumerated type if and only if the
former is a specialized enumerated type of the latter, or a descendant of a specialized
enumerated type of the latter.

ConML Technical Specification · version 1.5.1

34

Enumerated types that are defined to specialize from another enumerated type are subject to
the following rules:

• They inherit all the enumerated items of the generalized enumerated type.

• They cannot declare (i.e. own) root enumerated items, but they can own enumerated
items that are sub-items of those inherited from their generalized enumerated type.

For example, an enumerated type Colours may define items Red and Blue. Then, a new
enumerated type ColoursPlus may be defined as specializing from Colours and adding items
Red/LightRed and Red/DarkRed.

4.5.4 Multiple Generalization of Classes

ConML implements multiple generalization for classes, i.e. a class can have multiple
generalized classes, each one through a different generalization. From the metamodel
perspective, this means that for each Class instance in a model, multiple Generalization
instances may exist with the Generalization role, each one, in turn, having exactly one
associated Class instance with the GeneralizedClass role.

For classes having multiple generalized classes, it must be explicitly specified which of the
corresponding generalizations dominates for inheritance purposes. Despite the fact that the
class specializes from multiple classes, it is expected that the dominant generalization provides
especially strong semantics to the class. For classes having a single generalized class, on the
contrary, the only generalization involved is implicitly the dominant one.

ConML does not implement multiple specialization, i.e. a class can be specialized into multiple
specialized classes, but all of them must obey to the same discriminant. In other words, only
one way to partition the associated category is allowed per class. From the metamodel
perspective, this means that for each Class instance in a model, only one Generalization
instance may exist at most with the Specialization role; this Generalization instance, in turn,
would group multiple Class instances with the SpecializedClass role under the same
Discriminant value.

With regard to generalization/specialization hierarchies of classes, the following concepts are
important:

• A class is an ancestor of another class if and only if the former is a generalized class of
the latter, or an ancestor of a generalized class of the latter.

• A class is a descendant of another class if and only if the former is a specialized class of
the latter, or a descendant of a specialized class of the latter.

A class with no generalized classes, or whose generalized classes are all abstract, may be
abstract or concrete. A class with at least one concrete generalized class must be concrete.

Whether a class is involved in generalization relationships or not, how many, and what
generalization is defined as dominant, determine what features it inherits and how. See
Feature Inheritance, p. 34 for more information.

4.5.5 Feature Inheritance

Inheritance is the mechanism by which a class is automatically assigned features owned by its
generalized classes. All kinds of features (properties, attributes and semi-associations) are
accessible from a class through two different associations: one beginning with “Owns” and
another one beginning with “Has”. For example, class Class has an OwnsAttributes as well as a
HasAttributes association. The “Owns” association represents the features that are owned by
the class, i.e. introduced and defined by the class itself (either by declaration or redefinition;
see Feature Redefinition, p. 35), rather than inherited. The “Has” association, on the contrary,
represents the collection of all the features assigned to the class, including both those owned
by the class plus those that are inherited from generalized classes.

ConML Technical Specification · version 1.5.1

35

In ConML, any class in a model inherits the features of its generalized classes according to the
following rules:

1. If the class has no generalized classes, its assigned features equal its owned features,
i.e. no inheritance occurs.

2. If the class has one or more generalized classes, its assigned features equal the owned
features of the class plus the assigned features of each of the generalized classes,
except for those that are redefined by the class.

3. If two or more generalized classes of a class have a common assigned feature, because
they have inherited it from a common ancestor class, this feature is inherited by the
class only through the generalization marked as dominant (see Multiple Generalization
of Classes, p. 34).

4. If a feature inherited by a class, and regardless of whether it is redefined by the class
(see Feature Redefinition, p. 35), results in a name clash with a feature owned by the
class, the class is deemed illegal.

5. If a feature inherited by a class from a given ancestor class results in a name clash with
a different feature inherited by the class from a second ancestor class, and regardless
of whether these features are redefined by the class (see Feature Redefinition, p. 35),
the class is deemed illegal.

4.5.6 Strong Semi-Associations

A semi-association is considered to be strong if it is definitional, i.e. if it captures information
that is directly relevant to the definition of the participant class. For example, Figure 11 shows
class Structure as strongly associated to class Place, meaning that the definition of the former
relies on that of the latter. Marking which semi-associations are strong on a model helps
understand how classes work together and serves as a base for the use of the model.

The two semi-associations in a binary association can be strong; this would signal a pair of
classes that are strongly coupled.

Strong semantics in the context of self-associations indicate that the involved class is
recursively defined in terms of itself, either with a different role (for asymmetric self-
associations) or even with the same role (for symmetric self-associations; see Symmetric Self-
Associations, p. 37).

4.5.7 Feature Redefinition

A feature (property, attribute or semi-association) assigned to a class (see Feature Inheritance,
p. 34) is always in one of the following situations:

• It is declared by the class. This means that the class declares the feature of its own. The
feature is owned by the class.

• It is inherited by the class. This means that the class has inherited the feature from an
ancestor class. The feature is not owned by the class.

• It is redefined by the class. This means that the class has inherited the feature from an
ancestor class and redefined it to change some of its characteristics. The redefinition
feature is owned by the class.

Feature redefinition requires inheritance; only features that are inherited may be redefined.
The changes that a class can produce on a feature through redefinition are of the following
kinds:

• The feature can be renamed. This may affect the outcome of the name clash detection
rules described in Namespaces, p. 30 and Feature Inheritance, p. 34.

• The definition of the feature can be changed.

ConML Technical Specification · version 1.5.1

36

• The cardinality can be changed if the redefined cardinality is more restrictive than (i.e.
is a subset of) the original one. For example, if the cardinality of the original feature is
1..*, the redefinition may specify 2..* or 1, but not 0..*.

• Sorted semantics can be changed from non-sorted to sorted, i.e. a non-sorted original
feature can be redefined as sorted. However, the opposite change is not possible.

• Constant semantics can be changed from non-constant (i.e. variable) to constant, i.e. a
non-constant original feature can be redefined as constant. However, the opposite
change is not possible.

• In the case of attributes:
o The data type can be changed if the data type of the redefinition can be

coerced into the original one, according to the compatibility table in Semantics
of Data Types, p. 32. For example, if the data type of the original attribute is
Text, the redefinition attribute may specify Number, but not the other way
around.

o Multilingual semantics can be changed from multilingual to non-multilingual
and vice versa.

• In the case of semi-associations:
o The role can be changed. This may affect the outcome of the name clash

detection rules described in Namespaces, p. 30.
o Strong semantics can be changed from non-strong to strong, i.e. a non-strong

original semi-association can be redefined as strong. However, the opposite
change is not possible.

o The opposite class can be changed if the opposite class of the redefinition is a
descendant of the opposite class of the original semi-association.

Although changing the name and definition of features, and the role of semi-associations, has
no effect on the model static semantics, it is expected that the overall sense of the redefinition
does not deviate significantly from that of the original feature.

In the case of semi-associations, and from the metamodel perspective, a redefinition is an
instance of the SemiAssociation class that is not directly connected to an instance of
Association, as would an instance of SemiAssociation that does not represent a redefinition.
Instead, a semi-association redefinition would obtain its linked association, inverse semi-
association and other related data through its original feature.

Finally, please note that temporal and subjective semantics of features, as well as whole/part
semantics of semi-associations, cannot be altered by redefinition.

4.5.8 Null and Unknown Semantics

In ConML, “null” means absence of fact, whereas “unknown” means presence of fact, but
absence of knowledge or doubt about it. From the metamodel perspective, this means that a
null-valued attribute has a matching value set with zero values; however, an unknown-valued
attribute has a matching value set with at least one value having unspecified (i.e. null)
contents.

There can also be the case that an object has multiple values for a given attribute (cardinality
permitting), some of which are known and some unknown. In cases like this, each value
instance would have non-null or null contents, respectively.

The following table summarizes the semantics of “null” and “unknown” as opposed to that of
regular, non-null, non-unknown expressions of information.

Expression Statement about fact Statement about knowledge about fact

null It does not exist. n/a

unknown It does exist. It is not known.

ConML Technical Specification · version 1.5.1

37

Expression Statement about fact Statement about knowledge about fact

(other) It does exist. It is known.

4.5.9 Symmetric Self-Associations

Most associations are binary, meaning that they involve two different classes. It is also
common to find unary associations, also called self-associations, which relate one class to
itself. Of these, most are asymmetric, meaning that the single class involved plays two
different roles in the association through the two corresponding semi-associations. It is the
case, for example, of Person.IsParentOf with inverse Person.IsChildOf; if a given person A is
parent of another person B, then B cannot be parent of A, but child of A.

However, a small number of self-associations are symmetric, meaning that the single class
involved plays only one role in the association through a single semi-association. It is the case,
for example, of Person.IsMarriedTo; if a given person A is married to another person B, then B
is married to A as well.

Symmetric self-associations are well supported by the ConML metamodel. The only peculiarity
that must be taken into account is that the primary and secondary semi-associations are the
same one; in other words, there is a single semi-association in the association, the inverse of
which is itself.

4.6 Soft Issues

Issues such as the passage of time or the different views about the same thing that different
people may have are often left out of models. ConML incorporates mechanisms specifically
designed to capture such “soft” issues in conceptual models. Some of these issues are dealt
with in ConML as aspects, i.e. cross-cutting concerns that are specified separately from core
modelling themes, and then “woven” into them.

4.6.1 Temporality

In order to capture temporality, a temporal aspect must be introduced in a type model. A
temporal aspect is one class in the model, which is designated as such (see TypeModel, p. 7).
Instances of this class will be able to work as moments that situate temporal versions of
objects along the time axis. Moments represent time and may be as brief or as long as
necessary.

Once a temporal aspect has been introduced in a model, it can be used to qualify existence
and predication.

4.6.1.1 Temporal qualification of existence

Objects in an instance model may be qualified with an instance of the temporal aspect class in
the corresponding type model, to indicate that the entity represented by the object only exists
at that moment. Any object may be qualified in this way, no matter what its type class is.

In conventional object-oriented models, it is assumed that objects exist eternally, or
uncertainly, as no indication is provided about their period of existence. In ConML, existentially
unqualified objects also behave this way, but qualified objects have a well-defined lifetime.

4.6.1.2 Temporal qualification of predication

Facet sets (value sets or reference sets) in an instance model may be qualified with an instance
of the temporal aspect class in the corresponding type model, to indicate that the
characteristic represented by the facet set only exists at that moment. The collection of facet
sets qualified for temporality by any given object is called a phase.

For a facet set to be predication-qualified regarding temporality, its type feature must be
marked as temporal through its IsTemporal attribute (see Feature, p. 11).

ConML Technical Specification · version 1.5.1

38

In conventional object-oriented models, it is assumed that changing the value of an attribute
of an object, or modifying the links of that object to other objects, overwrite the previous state
with the new one, and that this new one becomes valid. In ConML this is the semantics of
regular, non-temporal features. Temporal features, on the other hand, support the creation of
a new object phase upon instance alteration. Creating a new phase means that the previous
and new states are both kept separately but linked together as part of the same object. This
way, a diachronic view of objects can be maintained in instance models.

Alternatively, a facet set is considered constant if its type feature is marked as such through its
IsConstant attribute (see Feature, p. 11). Constant semantics imply that no changes may occur
to the facet set once it has been created. Constant and temporal semantics are mutually
exclusive.

In summary, and in relation to temporal qualification of predication, features may be:

• Constant, meaning that their instances cannot change. This is achieved by marking the
feature as constant.

• Variable, meaning that their instances may change by overwriting previous states. This
is the default mode and is achieved by not marking the feature as either constant or
temporal.

• Temporal, meaning that their instances may change by optionally creating new
phases. This is achieved by marking the feature as temporal.

4.6.1.3 Relationships between existential and predication temporal qualification

There are ontological connections between existential and predication qualification of
temporality. Specifically, temporal existential qualification must encompass every phase. That
is, an object may not have a phase whose qualifier “falls outside” the object’s temporal
existential qualifier. Here, the phrase “falls outside” has complex semantics, and it is often
difficult to enforce the corresponding rules in an automatic way, as the containment or
coverage semantics between instances of the designated temporal aspect class are not always
immediate in the model. For example, the temporal qualifier 1937 (interpreted as a year) “falls
inside” 20th century, but this may not be derivable from the information in the model.

4.6.2 Subjectivity

In order to capture subjectivity, a subjective aspect must be introduced in a type model. A
subjective aspect is one class in the model, which is designated as such SubjectiveAspect (see
TypeModel, p. 7). Instances of this class will be able to work as subjects that situate subjective
versions of objects over multiple voices. Subjects represent the different opinions and
interpretations that different people or communities may have about the same things, and
may correspond to an individual, a group or a whole community. Note that subjectivity, as
defined in ConML, is not related to reported speech (such as in “Alice: Bob thinks the wall is
white”) but to subjectively-constructed knowledge (such as in “Alice: the wall is beautiful”); in
this regard, subjectivity is related to the fact/value difference described by [4].

Once a subjective aspect has been introduced in a model, it can be used to qualify existence
and predication.

4.6.2.1 Subjective qualification of existence

Objects in an instance model may be qualified with an instance of the subjective aspect class in
the corresponding type model, to indicate that the entity represented by the object only exists
according to that subject. Any object may be qualified in this way, no matter what its type class
is.

In conventional object-oriented models, it is assumed that objects exist objectively for
everyone, or uncertainly, as no indication is provided about their subjective status. In ConML,

ConML Technical Specification · version 1.5.1

39

existentially unqualified objects also behave this way, but qualified objects have a well-defined
subjective status.

4.6.2.2 Subjective qualification of predication

Facet sets (value sets or reference sets) in an instance model can be qualified with an instance
of the subjective aspect class in the corresponding type model, to indicate that the
characteristic represented by the facet set only exists according to that subject. The collection
of facet sets qualified for subjectivity by any given object is called a perspective.

For a facet set to be predication-qualified regarding subjectivity, its type feature must be
marked as subjective through its IsSubjective attribute (see Feature, p. 11).

In conventional object-oriented models, it is assumed that changing the value of an attribute
of an object, or modifying the links of that object to other objects, overwrite the previous state
with the new one, and that this new one becomes valid. In ConML this is the semantics of
regular, non-subjective features. Subjective features, on the other hand, support the creation
of a new object perspective upon instance alteration. Creating a new perspective means that
the previous and new states are both kept separately but linked together as part of the same
object. This way, a multivocal view of objects can be maintained in instance models.

In summary, and in relation to subjective qualification of predication, features may be:

• Objective, meaning that a single perspective is allowed for their instances. This is the
default mode and is achieved by not marking the feature as subjective. This usually
corresponds to fact propositions in [4].

• Subjective, meaning that their instances may change depending on the agent by
optionally creating new perspectives. This is achieved by marking the feature as
subjective. This usually corresponds to value propositions in [4].

4.6.2.3 Relationships between existential and predication subjective qualification

Like in the case of temporality, there are ontological connections between existential and
predication qualification of subjectivity. Specifically, subjective existential qualification must
cover every perspective. That is, an object cannot have a perspective whose qualifier is not
“included” in the object’s subjective existential qualifiers. Here, the term “included” has
complex semantics, and it is often difficult to enforce the corresponding rules in an automatic
way, as the containment or coverage semantics between instances of the designated
subjective aspect class are not always immediate in the model. For example, the subjective
qualifier Alice may be “included” in the qualifier Acme Ltd. if Alice is part of Acme Ltd., but this
may not be derivable from the information in the model.

4.6.3 Vagueness

Vagueness comes in two kinds: ontic vagueness or imprecision, which refers to the nature of
things not being clear-cut (such as the boundaries of a city); and epistemic vagueness or
uncertainty, which refers to our knowledge of things not being accurate (such as the rough
estimation of a radiocarbon date).

4.6.3.1 Imprecision

Imprecision is supported in ConML through the Time data type, which may express values of
variable resolution (see BaseDataType, p. 16), as well as the use of abstract enumerated items
(see Enumerated Item Hierarchies, p. 33).

4.6.3.2 Uncertainty

ConML adopts an “open world” assumption by which explicit statements about not knowing
something can be made. In particular, stating that a value is unknown implies that the value is

ConML Technical Specification · version 1.5.1

40

known to exist, but its contents are not known. This is different to stating that a value is null,
which implies that the value is known not to exist (see Null and Unknown Semantics, p. 36).

In addition, certainty markers may be used to qualify existence and predication, according to
the DegreeOfCertainty enumeration. This allows an instance model to express specific beliefs
about the existence of objects (see Object, p. 24) as well as individual predicative facts
conveyed by facets (see Facet, p. 27).

4.6.4 Multilingualism

Models can be expressed in multiple human languages. In order to make a model multilingual,
a number of languages may be defined within it. Specific languages will be able to index
translated versions of objects. A model always has at least one language but may have many.
One of them is the default language, which is assumed when no explicit language reference is
made.

Language names follow the IETF language tag recommendation
(https://en.wikipedia.org/wiki/IETF_language_tag), but employ underscores instead of
hyphens so that legal model part names are obtained.

On creation, a model contains a single language, which by default is en-GB. New languages
may be added to a model at any time, and any language may be made the default one in a
model at any time. Languages may be deleted from a model at any time, except for the default
language.

4.6.4.1 Type models

In a type model, most text-typed properties of model elements may be specified in multiple
languages. In particular, the following model texts are multilingual:

• Model.Name and Model.Description

• Language.Description

• Tag.Name

• Package.Name and Package.Description

• Type.Name and Type.Definition

• EnumeratedItem.Name and EnumeratedItem.Definition

• Generalization.Discriminant

• SemiAssociation.Role

4.6.4.2 Instance models

In a type model, attributes of type Text can be marked as multilingual through the Is-
Multilingual attribute (see Attribute, p. 13). An attribute marked as such is one that supports
the specification of contents in multiple languages in conforming instance models.

In an instance model, translated versions of objects can be created; they are called
translations. A translation, therefore, is a version of an object as expressed in a given language
and, as such, it must refer to a particular language in the instance model. This is achieved by
linking each translation to a language. From the metamodel perspective, this means that the
object’s value sets that represent the object state as expressed in said language will have a
non-null language qualifier.

4.7 Type Model Extension

A type model can be defined as either a standalone model or as an extension from a base type
model. A model that is constructed through extension is called a particular model. Particular
models are guaranteed to be Liskov-compatible with their base. This means that any instance
model conforming to a particular model is guaranteed to conform also to its base model.
Figure 2 shows the TypeModel.Extends association that enables this.

https://en.wikipedia.org/wiki/IETF_language_tag

ConML Technical Specification · version 1.5.1

41

When a particular model is created, it contains every element in its base model. From that
point on, changes can be made to the particular model to add, modify or delete model
elements. Model elements in the particular model that are taken from the base model are
called reused elements; model elements that have been added during extension, and which do
not exist in the base model, are called extended elements.

During extension, Liskov compatibility is not maintained by restricting what changes may be
carried out on a base model; in fact, almost any change is possible during extension. Rather,
compatibility is maintained through the application of various reinterpretation rules that can
recast an instance model conforming to the particular model as to conform to the base model.
These rules apply to specific extension mechanisms, which are outlined below. In the next
sections, B refers to the base model, P to the particular model, and K to an instance model of
P.

4.7.1 Adding Enumerated Types and Items

Enumerated types or items may be added to a model during extension. If an enumerated type
is added that specializes from another in the base model, the new enumerated type may not
declare root enumerated items (as described in Enumerated Item Hierarchies, p. 33).

If a non-root enumerated item is added to an enumerated type in the base model, the
following reinterpretation rule applies:

RR.1

A value in K pointing at an extended non-root enumerated item in P is reinterpreted as pointing
to the most immediate ancestor of said enumerated item that exists in B.

If a root enumerated item is added to an enumerated type in the base model, the following
reinterpretation rule applies:

RR.2

A value in K pointing at an extended root enumerated item in P is reinterpreted as unknown.

4.7.2 Adding Classes

Classes may be added to a model during extension. If a non-root class (i.e. a class that
specializes from other classes that pre-exist in the base model) is added, the following
reinterpretation rule applies:

RR.3

An object in K having a non-root extended class in P as type is reinterpreted to have the most
immediate ancestor of said class that exists in B as type.

If a root class (i.e. a class that does not specialize from any other class) is added, the following
reinterpretation rule applies:

RR.4

An object in K having a root extended class in P as type is reinterpreted as non-existing.

Note that adding root classes during model extension is uncommon, as it tends to alter the
base model’s scope and purpose.

4.7.3 Adding Features

Properties, attributes and associations may be added to a model during extension, involving
either reused or extended classes. If they involve extended classes, no reinterpretation rule
applies, as the corresponding objects will be ignored or abstracted during reinterpretation, as
per RR.3 and RR.4. However, if the added features pertain to reused classes, then the following
reinterpretation rules apply:

ConML Technical Specification · version 1.5.1

42

RR.5

A value in K having an extended attribute in P as type that belongs to a reused class is
reinterpreted as non-existing.

RR.6

A link in K having an extended association in P as type that connects reused classes is
reinterpreted as non-existing.

4.7.4 Modifying Packages, Enumerated Types, Enumerated Items, and Classes

Packages, enumerated types, enumerated items and classes may be reamed during extension,
so that the model elements better fit the extended model’s terminological preferences. When
doing this, the following reinterpretation rule applies:

RR.7

An object in K referring to a renamed model element in P as type is reinterpreted as referring to
the original model element in B.

4.7.5 Modifying Features

Features may be renamed during extension in the same manner as other kinds of model
elements, as described in the previous section. The same reinterpretation rule applies.

In addition, some details of properties, attributes and semi-associations maybe changed during
extension by using the redefinition mechanism described in Feature Redefinition, p. 35.
Feature redefinition is simple and safe, and the recommended way to modify features in a
particular model. No specific reinterpretation rules apply.

4.7.6 Hiding Attributes

Attributes may be hidden during extension if there is the guarantee that every one of their
instances will always have the same value. To do this, the attribute to be hidden is annotated
as such, and a default value to use is specified. When doing this, the following reinterpretation
rule applies:

RR.8

An object in K having a class in P as type for which an attribute has been hidden is reinterpreted
as having the specified default values in P for said attribute.

4.7.7 Deleting Enumerated Types or Items

Enumerated types may be deleted during extension if every class (see below) that contains
attributes of that type is also deleted. Also, enumerated items may be deleted during
extension without any limitations. No reinterpretation rules apply.

4.7.8 Deleting Classes

Classes may be deleted during extension. A reused class may be deleted if:

1. Every one of its descendant classes is also deleted.

2. No classes are kept in the model having semi-associations pointing to the deleted class

with a minimum cardinality greater than zero.

3. The class is not an aspect class (subjective or temporal) or, if it is, there are no features

in the model marked with the corresponding aspect.

No reinterpretation rules apply.

ConML Technical Specification · version 1.5.1

43

4.7.9 Deleting Features

Features may be deleted during model extension only if they have a minimum cardinality of
zero. In the case of associations, a complete binary association may be deleted if both semi-
associations have minimum cardinalities of zero.

When doing this for attributes, the following reinterpretation rule applies:

RR.9

An object in K having as type a reused class in P from which an attribute has been deleted is
reinterpreted as having a value with null contents for that attribute in B.

In the case of associations, no reinterpretation rules apply.

4.8 Metainformation

In ConML, metainformation refers to instance model elements that document other model
elements. Metainformation may be applied to any kind of model elements, either type or
instance. Since metainformation is composed by objects, there may be metainformation that
documents other metainformation.

The objects that comprise metainformation usually reside in a different model to that being
documented. However, they may also be part of the same model. For example, it is common
that an object in an instance model documents a class in a type model, but it may also
document another object in the same instance model. In this regard, metainformation
constitutes regular information, made of regular objects, which happen to document model
elements (in the same or a different model). Consequently, the term “metainformation object”
must be understood as “an object that works as metainformation in relation to some well-
known model elements”. Also, there is no such a thing as a metainformation model; objects
that work as metainformation are contained in regular instance models.

An object may document zero to many model elements, and a model element may be
documented by zero to many metainformation objects, as expressed by the Object.Documents
association (see Object, p. 24).

4.9 References between Models

Models may refer to other models in a variety of situations:

• Conformance. An instance model conforms to a type model.

• Extension. A particular type model extends a base type model.

• Metainformation. A metainformation instance model describes elements in a model.

In any of these situations, the model making the reference is dependent on the model being
referred to, which is its dependee. Optionally, the dependee model may be sealed before the
dependency is established. A sealed model cannot be changed (unless the version number is
incremented) and is thus safe to redistribute as a reliable source for reference. New versions
of a sealed model can be generated and altered, though. A model that is not sealed is called
unsealed or open.

4.9.1 Reference Updating

In general, and regardless of whether a dependee model is sealed or not, it may be updated on
demand to a different dependee model, so that the dependent model’s reference is
recalculated. The updated dependee model is often a newer version of the previous one,
although it may also be an older version, or even a different model altogether if it is a direct or
indirect extension of any version of the currently referenced model. More specifically:

ConML Technical Specification · version 1.5.1

44

• Conformance. An instance model may update its type model to a different version of
it, or to a type model that is directly or indirectly extended from any version of it. On
updating, the instance model is reinterpreted to conform to the updated type model.

• Extension. A particular type model may update its base model to a different version of
it, or to a type model that is directly or indirectly extended from any version of it. On
updating, the particular model is reinterpreted as an extension of the updated model
so that it stays Liskov-compatible with its previous form.

• Metainformation. No updating may take place regarding metainformation
relationships, as metainformation is tightly dependent on the identity and semantics of
the model elements it documents.

For example, the type model of an instance model may be updated so that a newer version is
obtained, replaced for the current one, and the contents of the instance model reinterpreted
according to this newer version.

4.9.2 Reuse of Referenced Model Elements

Model elements in the dependee model are available to, and may be reused by, the
dependent model according to the following rules.

4.9.2.1 Aspect classes

The aspect classes of a base model are visible and usable by a particular model.

A particular model may change an aspect class only to a subclass of the one specified by its
base model.

4.9.2.2 Languages

Languages in a base model are visible and usable by a particular model.

A particular model may add new languages. It may also delete reused languages.

Languages in a type model are invisible and unavailable to an instance model. The languages
defined and used by an instance model are completely independent of those in its type model.

4.9.2.3 Tags

Tags in a base model are visible and usable by a particular model.

A particular model may add new tags and apply them to reused or extended elements. It may
also apply or un-apply reused tags to reused or extended elements, and even delete reused
tags.

Tags in a type model are invisible and unavailable to an instance model. The tags defined and
used by an instance model are completely independent of those in its type model.

4.9.2.4 Packages

Packages in a base model are visible and usable by a particular model, as they organize the
contents of potentially most of its elements.

A particular model may repackage reused or extended elements in any manner, by adding
them to packages (either reused or extended) or by unpackaging them. A particular model may
also delete reused packages.

5 Notation
This section describes how to compose diagrams and represent ConML models on paper,
screen or other graphical medium.

ConML Technical Specification · version 1.5.1

45

5.1 General Notation

Some notational artefacts may be used in multiple diagram or table types; they are described
in the following sections.

5.1.1 Comments

A comment is a text with no conceptual value to the model, but which is included in a diagram
or table as an annotation or for assistance to the human reader. To show a comment, the
comment text must be written in a compact block and prefixed by two consecutive slash
characters (“/”). Figure 11 shows an example next to the Structure class.

5.1.2 Markers

Markers are short abbreviations that are attached to model element names or other texts in
order to add extra information (e.g. “A” to indicate that a class is abstract).

If multiple markers of the same kind are to be applied together, they must be shown as a list
separated by commas (“,”).

5.1.2.1 Abstract marker

The abstract marker indicates that a class is abstract. It is shown by a capital “A”.

5.1.2.2 Aspect markers

Aspect markers are short abbreviations that are attached to model element names or other
expressions in order to show that they possess specific semantics in relation to an aspect in the
model (e.g. “T” to indicate that a class constitutes the temporal aspect of a model).

The following aspect markers exist:

• Constant semantics, indicated by a capital “K”.

• Temporal semantics, indicated by a capital “T”.

• Subjective semantics, indicated by a capital “S”.

• Multilingual semantics, indicated by a capital “L”.

5.1.2.3 Certainty markers

Certainty markers are simple symbols that are attached to objects or facets in order to show
their degree of certainty, according to the DegreeOfCertainty enumeration.

The following certainty markers exist:

• Certain, indicated by an asterisk “*”.

• Probable, indicated by a plus sign “+”.

• Possible, indicated by a swung dash “⁓”.

• Improbable, indicated by a minus sign “-”.

• Impossible, indicated by an exclamation mark “!”.

5.1.3 Selector Dots

A selector dot is a small black dot placed next to an element in a diagram in order to “select” it
amongst multiple alternatives. They are used in a number of situations, such as to designate a
dominant generalization.

5.1.4 Cardinalities

The cardinality of a feature may be shown through a text that is composed by using the
following rules:

• If the minimum and maximum cardinalities coincide, show a single number that
expresses them. An example is shown for the Location role of class Place in Figure 11.

ConML Technical Specification · version 1.5.1

46

• If the minimum and maximum cardinalities are different, show the minimum
cardinality followed by two consecutive full stop characters (“.”) plus the maximum
cardinality. An example is shown for attribute Place.Region in Figure 11.

• If any cardinality is very high or indeterminate, use an asterisk character (“*”) to depict
it. Various examples can be seen in Figure 11.

Furthermore, an upwards angle character (“^”) must be appended to the cardinality text if the
feature is sorted. The Area.Contains semi-association in Figure 11 is depicted as sorted.

5.1.5 References to Data Types

Whenever a reference to a data type is needed, the following rules apply:

• If the referenced data type is a simple data type, then state the base data type directly
(Text or Number, for example).

• If the reference data type is an enumerated type, then use the keyword “enum”
followed by the name of the enumerated type in question (see example for
StructureType in Figure 11).

5.1.6 Languages

The language selection operator is the pipe character (“|”).

There are three manners to reference a multilingual text-typed value set in ConML:

• Multilingual, such as in a.Name|. This resolved to a collection of value sets indexed by
language.

• Explicit, such as in a.Name|en. This resolves to a single value set corresponding to the
specified language, or to that that most closely matches the provided language name.

• Implicit, such as in a.Name. This resolves to a single value set corresponding to the
default language.

The keyword “language” may be used to establish the default language for a diagram. A
diagram should be interpreted in relation to language as follows:

• If a language declaration of the form "language <name>" is present at the top, then
the specific language should be assumed as default.

• Implicit references should be assumed to employ said default language.

• Explicit references should be honoured.

• No multilingual references may be used in diagrams.

5.1.7 Applies Relationships

An “applies” relationship depicts the fact that something in a diagram applies to a particular
model element. Applies relationships are shown by a solid line from the source element
towards the target element and having a hollow circular end on the latter side. An example
may be seen in Figure 11 for metainformation object cd1 documenting the Point class.

The circular end of the applies relationship line must be drawn so that it intersects or overlaps
the target element. For example, if the target element is a class, then the circular end of the
applies relationship line must intersect the class rectangle border.

Applies relationships are used to depict metainformation objects documenting model
elements in diagrams of any kind.

5.1.8 Multi-Node Boxes

Large or complex diagrams usually involve attaching connectors (such as
generalization/association or link lines) to many diagram nodes (such as class or object boxes).

ConML Technical Specification · version 1.5.1

47

In these cases, the diagram can become cumbersome and difficult to understand. To simplify
situations like this, a multi-node box notation can be used, as shown in Figure 10.

Figure 10. Sample object diagram showing a link line attached to a multi-node box containing three objects.

In the example, a single WorksFor link is depicted, having one end attached to a multi-node
box. This is equivalent to drawing three individual links, each attached to an object box inside
the multi-node box.

5.2 Class Diagrams

A class diagram depicts a collection of classes and other elements of a given type model in a
condensed and visual fashion. Class diagrams are not meant to be complete, and they do not
show all the information that exists in the underlying model. On the contrary, their objective is
to give the reader the right amount of information to gain a good understanding of the model,
leaving out the details. These details can be expressed separately in the form of tables; see
Specification Tables, p. 56.

ConML class diagrams are relatively similar to those defined by UML [2], and it is expected that
a reader who is familiar with UML will understand a ConML class diagram with ease.

5.2.1 Classes, Properties and Attributes

As Figure 11 shows, each class is depicted as a rectangle divided in two sections.

Figure 11. Sample class diagram showing classes Structure, Place, Point and Area, as well as their properties and
attributes, plus some associations. Aspect classes Event and Agent are also shown, as well as a metainformation
object cd1.

The upper section of the rectangle contains the class name, centred, and followed by an
abstract marker (see Abstract marker, p. 45) enclosed in parentheses (“(“, “)”) if the class is
abstract.

p1: Person

Name = Alice

p2: Person

Name = Bob

p3: Person

Name = Claire

org: Organization

Name = Acme, Ltd.

WorksFor

EmployerEmployee

Structure

Type [Kind]: 1 enum StructureType

Use: 1 enum StructureUse (T, S)

Content: 0..* ref Find

Descrip tion: 0..1 Text (S)

Point

UTM x: 1 Number

UTM y: 1 Number

Place (A)

Region: 1..* Text

Country: 1 Text

Area

Surface: 1 ?

0..*^ 0..*

0..* 1

Location

//The possible values for structure

types and structure uses are defined

elsewhere.

//The class Find is defined elsewhere.

[T] Event

Start: 1 Time

End: 0..1 Time

0..*

Neighbouring

[S] Agent (A)

IsWithin

[Contains]

IsLocatedIn IsCloseTo

cd1: ClassDetails

Author = Jane

CreateDate = 8 June 2017

ConML Technical Specification · version 1.5.1

48

If the class constitutes one or more aspects (see Soft Issues, p. 37), its name must be preceded
by the necessary aspect markers (see Aspect markers, p. 45) enclosed in brackets (“[“, “]”).
Figure 11 shows class Event marked as constituting the temporal aspect of the model.

The lower section of the rectangle contains a list of the properties and attributes that are
owned by the class, one per line. For each property or attribute, its name is shown followed by
a colon character (“:”), an optional cardinality expression and then the attribute type or a
question mark (“?”) for properties. If no cardinality expression is shown, a cardinality of exactly
1 is assumed by default.

Properties and attributes that redefine others are shown by adding the name of the original
feature in brackets (“[“, “]”) after the feature name. Figure 11 shows an example with attribute
Type of class Structure, which redefines attribute Kind of an ancestor class. If the feature name
does not change in the redefinition, repeating its name is not necessary.

Properties or attributes may be marked as constant, temporal, subjective, or a combination by
appending the necessary aspect markers (see Aspect markers, p. 45) enclosed in parentheses
(“(“, “)”) to the corresponding line. Bear in mind that constant and temporal markers are
incompatible (see Temporal qualification of predication, p. 37). Figure 11 shows attribute Use
of class Structure, which is marked as both temporal and subjective.

Properties and attributes of a class may be hidden in order to save space and present a more
compact view of the model; to accomplish this, the lower section of the class rectangle must
be completely omitted, as shown for Agent in the sample diagram.

5.2.2 Generalization Relationships

Each generalization relationship is shown as an arrow with multiple bases, starting at each of
the specialized classes and pointing at the generalized class. Line style is continuous, and the
arrowhead is a hollow triangle. Figure 11 shows an example with classes Point and Area, which
are specialized from class Place.

The discriminant of the generalization relationship may be optionally shown next to the
corresponding arrowhead.

In the case of a class with multiple generalization relationships, a selector dot must be placed
next to the point where the line corresponding to the dominant generalization meets said
class.

Indirect generalization relationships (i.e. a relationship between a class and an ancestor that is
not its immediate generalized class) can also be depicted in diagrams by using a dashed line.

5.2.3 Associations and Semi-Associations

There are two manners in which associations and semi-associations can be depicted: expanded
and compact.

5.2.3.1 Expanded style

The expanded style is the most expressive, since it can depict all the information pertaining to
an association and its package semi-associations. The notation varies depending on whether
the association is asymmetric (most common case) or a symmetric self-association (see
Symmetric Self-Associations, p. 37).

5.2.3.1.1 Asymmetric associations

Using the expanded style, each asymmetric association is shown as a continuous line linking
the two participant classes, or the single participant class to itself in the case of self-
associations. Details of the two related semi-associations are shown next to this line, as
described below.

ConML Technical Specification · version 1.5.1

49

The name of each semi-association may be shown centred on the line, midway between the
participant class rectangles. A solid triangular arrowhead with no line must be placed next to
this text in order to indicate in which way the name of the semi-association must be read. For
example, in Figure 11 it can be read that “each structure is located in a place” (rather than the
incorrect “each place is located in multiple structures”). In most cases, showing the name of
the primary semi-association is enough. If the names for both semi-associations are displayed,
they must be shown on opposite sides of the association line, as shown in Figure 11 for the
association between Point and Area. Semi-associations that redefine others must show the
name of the original semi-association in brackets (“[“, “]”) after the semi-association name;
note that this notation applies only to the semi-association being explicitly mentioned, and not
to its inverse. If the semi-association name does not change in the redefinition, repeating its
name is not necessary; Figure 11 shows an example with semi-association Contains of class
Area, which keeps the name unchanged. Similarly, the roles of semi-associations that redefine
others must show the original role in brackets (“[“, “]”) after the semi-association role; if the
role does not change in the redefinition, repeating it is not necessary. Semi-associations may
be marked as temporal, subjective, or both by appending the necessary aspect markers (see
Aspect markers, p. 45) enclosed in parentheses (“(“, “)”) to the corresponding line.

The role for each semi-association, if any, must be shown next to the end of the association
line that touches the opposite class. For example, Figure 11 shows that the place where a
structure is located is called its location. Similarly, the cardinalities of each semi-association
must be shown next to the end of the association line that touches the opposite class.

If a semi-association has “whole” semantics, a hollow diamond must be added to the end of
the association line that touches the participant class rectangle. This diamond is read as
“whole”, “composite” or “aggregate”. An example can be seen for the class Area in Figure 11.

Finally, if a semi-association has strong semantics, a short arrow with a solid circle at its base
and an open arrow head pointing in the direction of the opposite class must be shown next to
the end of the association line that touches the participant class. An example can be seen for
the class Structure in Figure 11.

5.2.3.1.2 Symmetric self-associations

Using the expanded style, each symmetric self-association is shown as a continuous line
protruding from the participant class and finished with a short diagonal stroke. Figure 11
shows an example regarding class Place. Details of the related semi-association are shown next
to this line, as described below.

The name of the semi-association may be shown on the line. An arrowhead, identical to those
used for asymmetrical associations, can be used, but is not necessary since directionality of
reading is meaningless. Semi-associations that redefine others must show the name of the
original semi-association in brackets (“[“, “]”) after the semi-association name; note that this
notation applies only to the semi-association being explicitly mentioned, and not to its inverse.
If the semi-association name does not change in the redefinition, repeating its name is not
necessary. Similarly, the roles of semi-associations that redefine others must show the original
role in brackets (“[“, “]”) after the semi-association role; if the role does not change in the
redefinition, repeating it is not necessary. Semi-associations may be marked as temporal,
subjective, or both by appending the necessary aspect markers (see Aspect markers, p. 45)
enclosed in parentheses (“(“, “)”) to the corresponding line.

The role for the semi-association, if any, must be shown next to the end of the association line
that touches the participant class. For example, Figure 11 shows that the place that is close to
another place is called its neighbouring place. Similarly, the cardinality of the semi-association
must be shown next to the end of the association line that touches the participant class. Strong
semantics can be shown in the same way as for asymmetric associations.

ConML Technical Specification · version 1.5.1

50

5.2.3.2 Compact style

The compact style is less expressive than the expanded style, since it can only depict a subset
of the information pertaining to an association and its package semi-associations. However, it
takes less room in the diagram and may be more convenient in some situations.

Symmetric self-associations (see Symmetric Self-Associations, p. 37) cannot be depicted using
the compact style, since they cannot involve whole/part semantics. In addition, the compact
style can only depict asymmetric associations that match the following patterns:

• “Contents” associations. These correspond to whole/part semi-associations with a
defined role for the opposite class and a 0..1 cardinality for the participant class.

• “Shared” associations. These correspond to whole/part semi-associations with a
defined role for the opposite class and a 0..* cardinality for the participant class.

• “Reference” associations. These correspond to non-whole/part semi-associations with
a defined role for the opposite class and a 0..* cardinality for the participant class.

In either case, each semi-association is shown as a line of text in the lower section of the class
rectangle, together with properties and attributes. For each semi-association, the role of the
opposite class is shown followed by a colon character (“:”), an optional cardinality expression,
the keyword “con” (for “contents”), “sha” (for “shared”), or “ref” (for “reference”), depending
on the semi-association type, and then the name of the opposite class. If no cardinality
expression is shown, a cardinality of exactly 1 is assumed by default.

Semi-associations that redefine others must show the role of the original semi-association in
brackets (“[“, “]”) after the semi-association role; note that this notation applies only to the
semi-association being explicitly mentioned, and not to its inverse. If the semi-association role
does not change in the redefinition, repeating its role is not necessary. Semi-associations may
be marked as temporal, subjective, or both by appending the necessary aspect markers (see
Aspect markers, p. 45) enclosed in parentheses (“(“, “)”) to the corresponding line.

Strong semantics cannot be shown using the compact style.

An example of a reference semi-association depicted using the compact style can be seen for
the class Structure in Figure 11.

5.2.4 Packages

The grouping of elements into packages can be shown in class diagrams by using two different
mechanisms. Figure 12 shows an example.

Figure 12. Sample class diagram showing an overall package declaration at the top left, plus explicit package
declarations for class Structure and Person.

An overall package declaration can be displayed anywhere in a class diagram by using the
keyword “package” followed by the full name of the package (Full and Relative Names of
Packages, p. 31); Figure 12 shows an example for the Base.Geography package. This means
that any class or enumerated type that is introduced in the diagram must be considered to be
a member of the package unless explicitly indicated otherwise. In the Figure 12 example, the
Place class is an implicit member of the Base.Geography package.

.Buildings.Structure

Type: 1 enum StructureType

Use: 1 enum StructureUse (T, S)

Content: 0..* ref Find

Description: 0..1 Text (S)

Place (A)

Region: 1..* Text

Country: 1 Text

Is Located In 0..* 1

Location

package Base.Geography

People.Person

Name: 1 Text

DOB: 1 Time

ConML Technical Specification · version 1.5.1

51

In addition, an explicit package declaration may be made for individual model elements by
preceding their name by a package name plus a full stop (“.”). This is interpreted as a full
package name unless an extra full stop (“.”) is used as a prefix, in which case it is interpreted to
be a package name relative to the overall diagram-level package. Figure 12 shows the example
of the Structure class, which is declared as a member of the relative-named Buildings package
within the overall Base.Geography package declared at the diagram level. The same figure also
shows the example of the Person class, which is declared as a member of the fully named
People package.

5.2.5 Languages

The language of a class diagram may be assumed to be the default or, alternatively, explicitly
established by using a language declaration. In Figure 13, the same class is shown in two
diagrams, using English and Spanish respectively.

Figure 13. Sample class diagrams showing an overall language declaration at the top left of each one.

An overall language declaration can be displayed anywhere in a class diagram by using the
keyword “language” followed by a language name (see Multilingualism, p. 40).

Text-valued attributes may be marked as multilingual by appending the corresponding aspect
marker (see Aspect markers, p. 45) enclosed in parentheses (“(“, “)”) to the corresponding line.
Figure 13 shows attribute Name of class Building, which is marked as multilingual.

5.3 Object Diagrams

An object diagram depicts a collection of objects plus other elements in a given instance model
in a visual fashion that is easy to apprehend. Since objects, values and links are instances of
classes, attributes and associations, an object diagram may also include elements from the
type model to which the instance model conforms. Like in the case of class diagrams, ConML
object diagrams are relatively similar to those defined by UML [2].

5.3.1 Objects and Values

As Figure 14 shows, each object is depicted as a rectangle divided in two sections.

Building

Name: 1 Text (L)

Type: 1 enum BuildingType

language en_GB

Edificio

Nombre: 1 Texto (L)

Tipo: 1 enum TipoDeEdificio

language es_ES

ConML Technical Specification · version 1.5.1

52

Figure 14. Sample object diagram showing objects s1, s2 and s3 (of class Structure) and object p1 (of class Point),
together with their values and links. Classes Point and Place are shown as well for the sake of clarity.

The upper section of the rectangle shows the identifier of the object followed by a colon
character (“:”) plus the name of its type class, all of it centred. For example, objects s1 and s2
in Figure 14 are instances of class Structure.

The lower section of the rectangle contains a list of the value sets of the object, one per line.
For each value set, the associated attribute name is shown followed by an equals sign (“=”) and
the contents of the values in the set. If no values exist in the set, the keyword “null” must be
used, as shown for the value of Description of object s1 in Figure 14. Otherwise, contents must
be depicted following some rules that depend on the data type of the corresponding attribute:

• Boolean. Show the keyword “true” or “false”.

• Number. Show the number in question, using a minus sign character (“-“) for negative
numbers and a decimal dot (“.”) to separate decimal fractions. Avoid thousands
separators and other accessory characters. See, for example, the values for UTM x and
UTM y of object p1 in Figure 14.

• Time. Show the time in question.

• Text. Show the text in question between double quotation marks (“"”). See, for
example, the value for Country of object p1 in Figure 14.

• Data. Raw data contents can rarely be displayed on a diagram, so an ellipsis sign (“…”)
is often used. See, for example, the value for Description of object s2 in Figure 14. A
comment can be added to indicate any relevant information regarding the contents of
a value of this type.

• Enumerated types. Show the absolute name, full name or fully qualified name of the
enumerated item in question, depending on the situation.

If there is a single value in the value set, show it as explained. If there are multiple values in the
set, the contents of each value must be shown forming a list using the comma character (“,”)
as a separator. The values of attribute Region of object p1 in Figure 14 depict an example.

If the content for a value is known to exist, but it is not known or there are doubts about it, the
keyword “unknown” must be used (see Vagueness, p. 39), as shown for the value of Type or

s1: Structure

Type = Wall

Use = Housing

Content = f1, f2

Description = null

s2: Structure

Type = Well

Use = Trading, Housing

Content = null

Descrip tion = ...

s3: Structure

Type = unknown

Use = unknown

Content = f3

Descrip tion = Verbal reference.

p1: Point

Region = A Coruña , Arteixo

Country = Spain

UTM x = 615477

UTM y = 4719054

Is Located In

Is Located In

Is Located In

Location

Location

Location

//Objects f1, f2 and f3 are

defined elsewhere. Point

UTM x: 1 Number

UTM y: 1 Number

Place (A)

Region: 1..* Text

Country: 1 Text

unknown: Point

ConML Technical Specification · version 1.5.1

53

Use of object s3 in Figure 14. Alternatively, if the content of a value is not relevant, or cannot
be depicted satisfactorily, an ellipsis character (“…”) may be used instead of the content to
signal its purposeful omission. The value of Description of object s2 in Figure 14 shows an
example.

Object values may be hidden altogether in order to save space and present a summarized view
of the model; to accomplish this, the lower section of the object rectangle must be completely
omitted, as shown for unknown: Point in the sample diagram.

5.3.2 Links

There are two manners in which links can be depicted in object diagrams: expanded and
compact. These correspond to the two styles in which semi-associations can be shown in class
diagrams (see Associations and Semi-Associations, p. 48).

It is recommended that the style chosen to represent a link matches the style chosen to
represent the associated association.

5.3.2.1 Expanded style

Using the expanded style, each link is shown as a continuous line linking the two participant
objects. The names of the semi-associations that define the type association of the link may be
shown centred on the line, midway between the participant object rectangles. Like in the case
of semi-associations in class diagrams, a solid triangular arrowhead with no line must be
placed next to this text in order to indicate in which way the name of the semi-association
must be read. The role of each semi-association, if any, may be shown next to the end of the
link line that touches the object playing the role. For whole-part relationships, a hollow
diamond must be shown next to the “whole” object rectangle, similarly to that for whole-part
relationships in class diagrams. For links involving strong semantics, a short arrow identical to
those used to mark strong semi-associations in class diagrams must be shown next to the
corresponding object rectangle. Examples of links can be seen in Figure 14 between objects s1
and p1, and between s2 and p1.

If one of the participant objects in the link is unknown, it must be shown by using the keyword
“unknown” instead of an object identifier, the appropriate class name, and an empty value list.
An example can be seen in Figure 14 for the link connected to object s3. If one of the
participant objects in the link is not relevant, or cannot be depicted satisfactorily, an ellipsis
character (“…”) may be used instead of an object identifier to signal its purposeful omission.

5.3.2.2 Compact style

Using the compact style, links are shown by displaying references in the lower section of the
object rectangle together with values, grouped by reference set and showing one per line. For
each reference set, the role of the opposite class is shown followed by an equals sign (“=”) and
the identifiers of the referenced objects. If no references exist in the reference set, the
keyword “null” must be used. If there are multiple references in a set, the identifier of each
referenced object must be shown forming a list using the comma character (“,”) as a separator.
If the referenced object is unknown, use the keyword “unknown” instead of an object
identifier. If one of the participant objects in the link is not relevant, or cannot be depicted
satisfactorily, an ellipsis character (“…”) may be used instead of an object identifier to signal its
purposeful omission. Strong semantics cannot be shown when using the compact style.

Figure 14 contain various examples of compact-style links through the semi-association with
role Content.

5.3.3 Elements of the Type Model

Since object diagrams focus on depicting information elements from an underlying instance
model, which must conform to a particular type model, it is sometimes convenient to include

ConML Technical Specification · version 1.5.1

54

some elements from said type model in an object diagram for the sake of reference clarity and
additional information.

Instantiation relationships between classes and objects can be depicted in object diagrams;
each instantiation relationship is shown as a continuous arrow with open head, based on the
instance object rectangle and pointing at the type class rectangle.

For example, although Figure 14 is an object diagram, it includes classes Point and Place,
because the objects in it (p1, majorly) are best understood in the presence of these classes.

Indirect instantiation relationships (i.e. a relationship between an object and an ancestor of its
type class) can also be depicted in diagrams by using a dashed line. For example, a dashed line
should be used to connect p1 to Place in Figure 14.

Any element from the type model that is shown in an object diagram must follow the
notational rules and guidelines described for class diagrams.

5.3.4 Qualification

Different kinds of qualifiers can be included in object diagrams both for existential and
predication qualification.

5.3.4.1 Existential qualification

Existential qualification can be depicted in object diagrams by adding a qualifier expression
under the object identifier for either temporality or subjectivity. A temporal qualifier
expression is composed of the “at” symbol (“@”) followed by an expression that resolves to
the corresponding moment object. Figure 15 shows an example for object s7, which displays a
perspective existence qualifier corresponding to John’s Team.

Figure 15. Sample object diagram showing some phases for object s5 and some perspectives for object s6, as well as
an existence-qualified object, s7, and a predication-qualified value for s5.Use. The expressions starting with “@” are
temporal qualifiers, and those starting with “$” are subjectivity qualifiers. Aspect classes are shown as well for
reference purposes.

In addition, certainty of existence may be indicated by adding a certainty marker in parenthesis
under the object identifier. Figure 15 shows an example for object s7.

s5: Structure

Type = Enclosure

Use @1956 = Housing

Content = unknown

Descrip tion = null

s5: Structure

Type = Enclosure

Use @8-Jun-2003 = Trading, Public (~)

Content = unknown

Description = null

s6: Structure

Type = Wall

Use $Jane;Joe = Structural

Content = null

Descrip tion $Jane Integral part of

 the house; can t determine sequence.

s6: Structure

Type = Wall

Use $John s Team = Structural

Content = null

Description $John s Team Probably

 built after rest of house.

s5: Structure

Type = Enclosure

Use @Dec-2011 = Public

Content = unknown

Description = null

[S] Agent (A)

Name: 1 Text

[T] Event

Start: 1 Time

End: 0..1 Time

s7: Structure

$John s Team (+)

Type = Enclosure

Use @1956 = Storage

Content = unknown

Descrip tion = null

ConML Technical Specification · version 1.5.1

55

5.3.4.2 Predication qualification

In addition to existential qualification, predication qualification can also be shown in object
diagrams. In Figure 15, three phases for object s5 are shown, each with different values for the
Use attribute, which is marked as temporal in the class diagram (see Figure 11). This represents
the fact that the use of the structure represented by s5 has changed over time. Each phase is
described by a phase qualifier attached to Use that contains enough information as to resolve
to an instance of the temporal aspect class, Event in this example.

Similarly, perspectives can be depicted by adding a perspective (i.e. subjective) qualifier
expression under the object identifier. This is composed of the “according to” symbol (“$”)
followed by an expression that resolves to the corresponding subject objects. In Figure 15,
three perspectives for object s6 are shown as an example, each with different values for the
Description attribute, which is marked as subjective in the class diagram (see Figure 11). This
represents the fact that the description of this structure is different to different people and
groups. Each perspective is described by a perspective qualifier attached to Description that
contains enough information as to resolve to an instance of the subjective aspect class, Agent
in this example. Note that two perspectives of s6 in Figure 15 are shown within a single object
box (the one on the left-hand side) with a compound perspective qualifier attached to
Description, meaning that both referenced subjects share the same point of view in this case.

Predication qualifiers can also be displayed on links; Figure 16 shows an example.

Figure 16. Sample class and object diagram showing two phases for object c1. Phase qualifiers are shown on links,
indicating that c1 is associated to p1, p2 and p3 at different times. Aspect classes are shown as well for reference
purposes.

In Figure 16, the whole c1 object, rather than specific phases, is shown as a box. However, two
phases, corresponding to moments T1 and T2 can be inferred from the phase qualifiers
displayed on links.

In addition, certainty of predication may be indicated by adding a certainty marker in
parenthesis after a value or reference text. Figure 15 shows an example for object s5.

Finally, a complete object can be depicted as a single box even if it has qualifiers by using an
ellipsis character (“…”) for those values or linked objects that vary along the corresponding
aspect.

5.3.5 Languages

The language of an object diagram may be assumed to be the default or, alternatively,
explicitly established by using a language declaration. Figure 17 shows an example.

Car

Colour: 1 enum Colours

Person

Name: 1 Text

Carries (T) 0..*0..*

Passenger

c1: Car

Colour = Red

p1: Person

Name = John

Carries @T1

Passenger

p2: Person

Name = Jane

Carries @T1

Passenger

p3: Person

Name = Bob

Carries @T2

Passenger

[S] Agent (A)

Name: 1 Text

[T] Event

Start: 1 Time

End: 0..1 Time

ConML Technical Specification · version 1.5.1

56

Figure 17. Sample object diagram showing two translations for object d1. The lines starting with “|” are translation
qualifiers.

Translations are object versions that pertain to a specific language (see Multilingualism, p. 40).
Explicit notation may be used to provide translations for an object. This is achieved by using
the object notation described in Objects and Values, p. 51, but adding a translation qualifier
under the object identifier, as in d1 in the figure. The translation qualifier is composed of the
pipe symbol (“|”) followed by a language name.

5.4 Specification Tables

A specification table shows the full details of an element in a model (a class, an attribute, an
association, an enumerated type, etc.), including the details of strongly related elements. For
example, the specification table of a given class shows the name of the class, whether it is
abstract or not, the names of its generalized class (if any), the specialization discriminant, if
any, the names of its specialized classes (if any), its definition, a full specification of each of its
owned properties, a full specification of each of its owned attributes, and a full specification of
each of its owned semi-associations. In contrast to class and object diagrams, specification
tables aim to display all the available information in the model about a given element, making
readability a second priority. In this way, specification tables and diagrams are complementary
forms of expression of the underlying model.

In specification tables, no field must be left blank; those fields for which a value is not defined
(e.g. “Discriminant” for a class with no specialized classes) must be filled in with the expression
“n/a”. Lists must be separated by a comma character (“,”).

Specification tables may adopt any appearance and layout as long as they fulfil the above
requirements.

5.5 Informal Variations

Given the requirement for simplicity and affordability to non-experts in information
technologies, some informal variations of ConML are allowed in certain scenarios. Informal
variations involve the following:

• Using localized versions of keywords and other model elements.

• Using masculine and feminine forms of words interchangeably in model element
names and other identifiers.

Typical scenarios for the usage of informal variants include informal sketching on a whiteboard
or paper, composing teaching or educational materials, or exemplifying language usage.

In any case, localized variants of ConML are completely informal. This means that they cannot
be claimed to comply with the technical specification described in this document, and support
from tools and other formalisms cannot be guaranteed for them.

o1: Organisation

Name = Acme Ltd.”

d1: Department

Name = ...

language en_GB

Organisation

Name: 1 Text

Department

Name: 1 Text (L)

0..*1

d1: Department

| en_GB

Name = Sales”

d1: Department

| es_ES

Name = Ventas”

ConML Technical Specification · version 1.5.1

57

The following sections describe the details of informal variations.

5.5.1 Localization

Localized variants of the ConML notation can be informally used to suit non-English settings.
For example, a project whose usual language is French may want to use the French variant of
the ConML notation.

A localized variant of the ConML notation includes the following:

• Translated equivalents of enumeration items in the metamodel.

• Translated equivalents of keywords in the notation.

Localized variants of the ConML notation should not be mixed: a model should use one and
only one localized variant. For example, avoid mixing keywords in one language and
enumerated items or keywords in a different language.

Localization should not be confused with multilingualism (see Multilingualism, p. 40).
Multilingualism provides formal and fully supported features to work with multiple languages
per model, whereas localization allows for informal variants of the ConML notation. When
working with a model in a particular language through multilingualism, it is common to employ
the corresponding localized variant of the ConML notation, although this is not compulsory.

The following sections describe some localized variants of the notation. Additional localized
variants may be added by extending these tables.

5.5.1.1 Enumeration Items

English

Localized Variants

French Galician Spanish

BaseDataType

Boolean Booléen Booleano Booleano

Number Nombre Número Número

Time Temps Tempo Tiempo

Text Texte Texto Texto

Data Données Datos Datos

5.5.1.2 Keywords

English

Localized Variants

French Galician Spanish

con con con con

enum énum enum enum

false non
faux
fausse

non
falso
falsa

no
falso
falsa

language lange linguaxe lenguaje

null nul nulo nulo

package paquet paquete paquete

ref ref ref ref

sha par com com

true oui
vrai
vraie

si
verdadeiro
verdadeira

sí
verdadero
verdadera

unknown inconnu
inconnue

descoñecido
descoñecida

desconocido
desconocida

ConML Technical Specification · version 1.5.1

58

5.5.2 Gender Alternation

When using a localized variant in a language that has grammatical gender, masculine or
feminine forms of words may be used in model element names and other identifiers as
necessary, interchangeably depending on the context. For example, consider a Person class
having an IsMarried attribute, as well as an Informant subclass of Person. When this model is
expressed in Spanish through multilingualism, Person becomes Persona, Informant becomes
Informante, and IsMarried becomes EstáCasada. Since Persona in Spanish is feminine,
EstáCasada adopts a feminine form as well. However, Informante is masculine, so when the
attribute is mentioned in the context of this subclass, it becomes EstáCasado. This gender
alternation does not mean that the attribute is redefined or changed in any manner; rather, it
constitutes an informal adjustment to make model expressions easier to read. Formal versions
of the model would need to adopt either the masculine or feminine form of the attribute name
and use it throughout.

Acknowledgments
Very special thanks to Charlotte Hug and Patricia Martín-Rodilla for their contributions to
ConML.

Special thanks to Alba Llavina, Brian Henderson-Sellers, Chris Partridge, Lucía Prieto, Martín
Pereira-Fariña, Patricia Martín-Rodilla, Sergio España and Yaiza Mouttet for their valuable
suggestions. Thanks also to the MIRFOL team.

References
[1] Gonzalez-Perez, C., 2012. A Conceptual Modelling Language for the Humanities and

Social Sciences, in Sixth International Conference on Research Challenges in
Information Science (RCIS), 2012, C. Rolland, J. Castro, and O. Pastor (eds.). IEEE
Computer Society. 396-401.

[2] ISO/IEC, 2012. Information technology -- Object Management Group Unified Modeling
Language (OMG UML) Part 1: Infrastructure. ISO/IEC 19505-1:2012.

[3] ISO/IEC, 2012. Information technology -- Object Management Group Unified Modeling
Language (OMG UML) Part 2: Superstructure. ISO/IEC 19505-2:2012.

[4] Wagemans, J., 2019. Four Basic Argument Forms. Research in Language. 17(1): 57-69.

